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Preface

This book serves as an interactive introduction to R for public health and
health data science students. Topics include data structures in R, exploratory
analysis, distributions, hypothesis testing, regression analysis, and larger scale
programming with functions and control flows. The presentation assumes
knowledge with the underlying methodology and focuses instead on how to
use R to implement your analysis.

This book is written using Quarto Book. You can download the Quarto files
used to generate this book or a corresponding Jupyter Notebook from the
GitHub repository1. The GitHub repository also contains a few cheat sheets2.
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1https://github.com/alicepaul/health-data-science-using-r
2https://github.com/alicepaul/health-data-science-using-r/tree/main/book/refs
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Part I

Introduction to R





1
Getting Started with R

This chapter introduces you to R as a programming language and shows you
how we can use this language in two different ways: directly through the R
Console, and using the RStudio development environment. To start, you need
to download R1 and RStudio2.

1.1 Why R?
What are some of the benefits of using R?

• R is built for statisticians and data analysts.

• R is open source.

• R has most of the latest statistical methods available.

• R is flexible.

Since R is designed for statisticians, it is built with data in mind. This comes
in handy when we want to streamline how we process and analyze data. It
also means that many statisticians working on new methods are publishing
user-created packages in R, so R users have access to most methods of inter-
est. R is also an interpreted language, which means that we do not have to
compile our code into machine language first; this allows for simpler syntax
and more flexibility when writing our code, which also makes it a great first
programming language to learn.

Python is another interpreted language often used for data analysis. Both
languages feature simple and flexible syntax, but while Python is more broadly
developed for usage outside of data science and statistical analyses, R is a great
programming language for those in health data science. I use both languages
and find switching between them to be straightforward, but I do prefer R for
anything related to data or statistical analysis.

1https://cran.rstudio.com/
2https://posit.co/download/rstudio-desktop/

3
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1.1.1 Installation of R and RStudio
To run R on your computer, you need to download and install R3. This allows
you to open the R application and run R code interactively. However, to get
the most out of programming with R, you should install RStudio, which is
an integrated development environment (IDE) for R. RStudio offers a nice
environment for writing, editing, running, and debugging R code.

Each chapter in this book is written as a Quarto document and can also be
downloaded as a Jupyter notebook. You can open Quarto files in RStudio to
run the code as you read and complete the practice questions and exercises.

1.2 The R Console
The R Console provides our first intro to code in R. Figure 1.1 shows the
console’s appearance when opened. You should see a blinking cursor; this is
where we can write our first line of code!

Figure 1.1: The R Console.

3https://cran.rstudio.com/

https://cran.rstudio.com/
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To start, type 2+3 and press ENTER. You should see that 5 is printed below
that code and that your cursor is moved to the next line.

1.2.1 Basic Computations and Objects
In the previous example, we coded a simple addition. Try out some other basic
calculations using the following operators :

• Addition: 5+6

• Subtraction: 7-2

• Multiplication: 2*3

• Division: 6/3

• Exponentiation: 4^2

• Modulo: 100 %% 4

For example, use the modulo operator to find what 100 mod 4 is. It should
return 0 since 100 is divisible by 4.

If we want to save the result of any computation, we need to create an object
to store our value of interest. An object is simply a named data structure
that allows us to reference that data structure. Objects are also commonly
called variables. In the following code, we create an object x which stores the
value 5 using the assignment operator <-. The assignment operator assigns
whatever is on the right-hand side of the operator to the name on the left-
hand side. We can now reference x by calling its name. Additionally, we can
update its value by adding 1. In the second line of code, the computer first
finds the value of the right-hand side by finding the current value of x before
adding 1 and assigning it back to x.

x <- 2+3
x <- x+1
x
#> [1] 6

We can create and store multiple objects by using different names. The follow-
ing code creates a new object y that is one more than the value of x. We can
see that the value of x is still 5 after running this code.

x <- 2+3
y <- x
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y <- y + 1
x
#> [1] 5

1.2.2 Naming Conventions
As we start creating objects, we want to make sure we use good object names.
Here are a few tips for naming objects effectively:

• Stick to a single format. We use snake_case, which uses underscores
between words (e.g., my_var, class_year).

• Make your names useful. Try to avoid using names that are too long
(e.g., which_day_of_the_week) or that do not contain enough information
(e.g., x1, x2, x3).

• Replace unexplained numeric values with named objects. For example, if
you need to do some calculations using 100 as the number of participants,
create an object n_part with value 100 rather than repeatedly using the
number. This makes the code easy to update and helps the user avoid
possible errors.

1.3 RStudio and Quarto
If we made a mistake in the code we typed in the console, we would have to re-
enter everything from the beginning. However, when we write code, we often
want to be able to run it multiple times and develop it in stages. R Scripts and
R Markdown files allow us to save all of our R code in files that we can update
and re-run, which allows us to create reproducible and easy-to-share analyses.
We now move to RStudio as our development environment to demonstrate
creating an R Script. When you open RStudio, there are multiple windows.
Start by opening a new R file by going to File -> New File -> R Script. You
should now see several windows as outlined in Figure 1.2.

1.3.1 Panes
There are four panes shown by default:

• Source Pane - used for editing code files such as R Scripts or Quarto
documents.
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Figure 1.2: RStudio Layout and Panes.

• Console Pane - used to show the live R session.

• Environment Pane - contains the Environment and History tabs, used
to keep track of the current state.

• Output Pane - contains the Plots and Packages tabs.

The source pane is the code editor window in the top left. This shows your
currently blank R Script. Add the following code to your .R file and save the
file as “test.R”. Note that here we used snake_case to name our objects!

# Calculate primary care physician to specialist ratio
pcp_phys <- c(6300, 1080, 9297, 16433)
spec_phys <- c(6750, 837, 10517, 22984)
pcp_spec_ratio <- 1000 * pcp_phys / spec_phys

The first line starts with # and does not contain any code. This is a comment
line, which allows us to add context, intent, or extra information to help the
reader understand our code. A good rule of thumb is that we want to write
enough comments so that we could open our code in 6 months and be able
to understand what we were doing. As we develop longer chunks of code, this
will become more important.

Unlike when we type code into the console, we can write multiple lines of code
in our R Script without running them. In order to run the code in the script,
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we need to tell RStudio we are ready to run it. To run a single line of code,
we can either hit Ctrl+Enter when on that line or we can hit the Run button

at the top right of the source pane. This copies the code to the R
Console. Try this out to run the first line of code that defines pcp_phys. You
can see that the line of code has been run in the console pane. Now check your
environment pane. You should see that you have a new object representing
the one we just created. This pane keeps track of all current objects. Run the
second line of code and see how the environment updates. If you look at the
History tab within this pane, you see the history of R commands run.

If we want to run all lines of code in our script, we can use the Source button
. Before we do this, we will clear our environment. You can do this by

clicking the broom in the environment pane, which deletes all objects in
the environment. Alternatively, you can go to Session -> Restart R in the main
menu, which restarts your whole R session. After clearing your environment,
click the Source button. You will see that in the R Console it shows that it
sourced this file. This means that it runs through all lines of code in this file.
You can see that our objects have been added back into our environment.

source("test.R")

Now suppose we want to update our script by adding a plot. Copy the code
in a subsequent code chunk, save your updated file, and then source your file.
You will see that the generated plot will appear in your output pane.

plot(spec_phys, pcp_phys)
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Unlike R Scripts which only contain R code, Quarto documents allow us to
intersperse text and code. This breaks our code into chunks surrounded by
text written in Markdown. Every chapter in this book is available as a Quarto
document. Try opening the Quarto file for Chapter 2 of this book. You will see
the first code chunk as in Figure 1.3. In order to run the code in a code chunk,
we can again use Ctrl+Enter to run a single line or selected lines. Additionally,

we can use the Play button . This runs all the code within the chunk. We
recommend using the available Quarto documents to follow along with the
text. Writing your own Quarto documents is covered in Chapter 22.

Figure 1.3: Example Code Chunk.

1.3.2 Calling Functions
When we use R, we have access to all the functions available in base R. A
function takes in one or more inputs and returns a single output object.
Let’s first use the simple function exp(). This exponential function takes in
one (or more) numeric values and exponentiates them. The following code
computes 𝑒3.
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exp(3)
#> [1] 20.1

Some other simple functions are shown that all convert a numeric input to
an integer value. The ceiling() and floor() functions return the ceiling and
floor of your input, and the round() function rounds your input to the closest
integer. Note that the round() function rounds a number ending in 0.5 to the
closest even integer.

ceiling(3.7)
#> [1] 4

floor(3.7)
#> [1] 3

round(2.5)
#> [1] 2
round(3.5)
#> [1] 4

If we want to learn about a function, we can use the help operator ? by
typing it in front of the function we are interested in: this brings up the
documentation for that particular function. This documentation often tells
you the usage of the function, the arguments (the object inputs) and the
value (information about the returned object), and it gives some examples of
how to use the function. For example, if we want to understand the difference
between floor() and ceiling(), we can call ?floor and ?ceiling. This should
bring up the documentation in your help window. We can then read that the
floor function rounds a numeric input down to the nearest integer, whereas
the ceiling function rounds a numeric input up to the nearest integer.

1.3.3 Working Directories and Paths
Let’s try using another example function: read.csv(). This function reads
in a comma-delimited file and returns the information as a data frame (try
typing ?read.csv in the console to read more about this function). We learn
more about data frames in Chapter 2. The first argument to this function
is a file, which can be expressed as either a file name or a path to a file.
First, download the file fake_names.csv from this book’s github repository4.

4https://github.com/alicepaul/health-data-science-using-r/tree/main/book/data

https://github.com/alicepaul/health-data-science-using-r/tree/main/book/data
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By default, R looks for the file in your current working directory To find
the working directory, you can run getwd(). You can see in the following
output that my current working directory is where the book content is on my
computer.

getwd()
#> [1] "/Users/Alice/Dropbox/health-data-science-using-r/book"

You can either move the .csv file to your current working directory and load
it in, or you can specify the path to the .csv file. Another option is to update
your working directory by using the setwd() function.

setwd('/Users/Alice/Dropbox/health-data-science-using-r/book/data')

If you receive an error that a file cannot be found, you most likely have the
wrong path to the file or the wrong file name. In the following code, I chose to
specify the path to the downloaded .csv file, saved this file to an object called
df, and then printed that df object.

# update this with the path to your file
df <- read.csv("data/fake_names.csv")
df
#> Name Age DOB City State
#> 1 Ken Irwin 37 6/28/85 Providence RI
#> 2 Delores Whittington 56 4/28/67 Smithfield RI
#> 3 Daniel Hughes 41 5/22/82 Providence RI
#> 4 Carlos Fain 83 2/2/40 Warren RI
#> 5 James Alford 67 2/23/56 East Providence RI
#> 6 Ruth Alvarez 34 9/22/88 Providence RI

We can see that df contains the information from the .csv file, and that R has
printed the first few observations of the data.

1.3.4 Installing and Loading Packages
When working with data frames, we often use the tidyverse package (Wick-
ham 2023), which is actually a collection of R packages for data science ap-
plications. An R package is a collection of functions and/or sample data that
allow us to expand on the functionality of R beyond the base functions. You
can check whether you have the tidyverse package installed by going to the
Package tab in the Output Pane in RStudio or by running the following com-
mand, which displays all your installed packages.
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installed.packages()

If you don’t already have a package installed, you can install it using the
install.packages() function. Note that you have to include single or double
quotes around the package name when using this function. You only have to
install a package one time.

install.packages('tidyverse')

The function read_csv() is another function to read in comma-delimited files
that is part of the readr package in the tidyverse (Wickham, Hester, and
Bryan 2023). However, if we tried to use this function to load in our data,
we would get an error that the function cannot be found. That is because
we haven’t loaded in this package. To do so, we use the library() function.
Unlike the install.packages() function, we do not have to use quotes around
the package name when calling this library() function. When we load in a
package, we see some messages. For example, in the following output we see
that this package contains the functions filter() and lag() that are also
functions in base R. In future chapters, we suppress these messages to make
the chapter presentation nicer. After loading the tidyverse package, we can
now use the read_csv() function.

library(tidyverse)

df <- read_csv("data/fake_names.csv", show_col_types=FALSE)
df
#> # A tibble: 6 x 5
#> Name Age DOB City State
#> <chr> <dbl> <chr> <chr> <chr>
#> 1 Ken Irwin 37 6/28/85 Providence RI
#> 2 Delores Whittington 56 4/28/67 Smithfield RI
#> 3 Daniel Hughes 41 5/22/82 Providence RI
#> 4 Carlos Fain 83 2/2/40 Warren RI
#> 5 James Alford 67 2/23/56 East Providence RI
#> 6 Ruth Alvarez 34 9/22/88 Providence RI

Alternatively, we could have told R where to locate the function by adding
readr:: before the function. This tells it to find read_csv() function in the
readr package. This can be helpful even if we have already loaded in the
package, since sometimes multiple packages have functions with the same
name.

df <- readr::read_csv("data/fake_names.csv", show_col_types = FALSE)
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1.4 RStudio Projects and RStudio Global Options
You have now had a basic tour of RStudio. Once you close RStudio, you have
the option of whether to store your current R environment. We highly recom-
mend that you update your RStudio options to not save your workspace on
exiting or load it on starting. This ensures that you have a fresh environment
every time you open RStudio and helps you to create fully reproducible code
and avoid possible errors or confusion (Figure 1.4).

Figure 1.4: RStudio Global Options.

Now when you re-open RStudio, it opens the files you had open previously
and has your history of commands. This may become confusing when you are
working on different files. RStudio projects allow us to create a folder that is
associated with a single project. This means that when we open our project,
it sets the appropriate work directory for us and only opens files related to
that project. In order to create a new R project, such as one associated with
this book, you can go to File -> New Project. You can then choose whether
to create a new directory or existing directory before selecting to create an
empty project as in Figure 1.5. Within this directory you should see a .RProj
file that allows you to re-open your project.
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Figure 1.5: Creating a New RStudio Project.

1.5 Tips and Reminders
We end this chapter with some final tips and reminders.

• Keyboard shortcuts: RStudio has several useful keyboard shortcuts that
make your programming experience more streamlined. It is worth getting
familiar with some of the most common keyboard shortcuts using this
book’s cheat sheet5.

• Asking for help: Within R, you can use the ? operator or the help() func-
tion to pull up documentation on a given function. This documentation is
also available online6.

• Finding all objects: You can use the environment pane or ls() function
to find all current objects. If you have an error that an object you are
calling does not exist, take a look to find where you defined it.

• Checking packages: If you get an error that a function does not exist,
check to make sure you have loaded that package using the library()
function. The list of packages used in this book is given on the GitHub
repository homepage.

5https://github.com/alicepaul/health-data-science-using-r/blob/main/book/refs/r_st
udio_keyboard_shortcuts.pdf

6https://rdocumentation.org/

https://github.com/alicepaul/health-data-science-using-r/blob/main/book/refs/r_studio_keyboard_shortcuts.pdf
https://github.com/alicepaul/health-data-science-using-r/blob/main/book/refs/r_studio_keyboard_shortcuts.pdf
https://rdocumentation.org/


2
Data Structures in R

In this chapter, we demonstrate the key data structures in R. Data struc-
tures are how information is stored in R and refer to the types of objects we
can create in R. The data structures that we use inform R how to interpret
our code. Any object is a named instance of a data structure. For example,
the object ex_num is a vector of numeric type.

ex_num <- 4

The main data structures in R are vectors, factors, matrices, arrays, lists,
and data frames. These structures are distinguished by their dimensions and
by the type of data they store. For example, we might have a one-dimensional
vector that contains all numeric values, or we could have a two-dimensional
data frame with rows and columns where we might have one numeric column
and one character column. In Figure 2.1, there are two vectors with different
types (character and numeric) on top, followed by a matrix and data frame be-
low. In this chapter, we cover each data structure except for arrays. Arrays are
an extension of matrices that allow for data that is more than two-dimensional
and are not needed for the applications covered in this book.

2.1 Data Types
Each individual value in R has a type: logical, integer, double, or character.
We can think of these as the building blocks of all data structures. We use
the typeof() function to find the type of our vector ex_num, which shows that
the value of ex_num is a double. A double is a numeric value with a stored
decimal.

typeof(ex_num)
#> [1] "double"

On the other hand, an integer is a whole number that does not contain a

15
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Figure 2.1: Data Structures.

decimal. We now create an integer object ex_int. To indicate to R that we
want to restrict our values to integer values, we use an L after the number.

ex_int <- 4L
typeof(ex_int)
#> [1] "integer"

Both ex_num and ex_int are numeric objects, but we can also work with two
other types of objects: characters (e.g., “php”, “stats”) and Booleans (e.g.,
TRUE, FALSE), also known as logicals.

ex_bool <- TRUE
ex_char <- "Alice"

typeof(ex_bool)
#> [1] "logical"
typeof(ex_char)
#> [1] "character"

One important characteristic of logical objects is that R also interprets them
as 0/1. This means they can be added as in the following example: each TRUE
has a value of 1, and each FALSE has a value of 0.
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TRUE + FALSE + TRUE
#> [1] 2

To create all of these objects, we used the assignment operator <-, which we
discussed in Chapter 1. You may see code elsewhere that uses an = instead.
While = can also be used for assignment, it is more standard practice to use
<-.

2.2 Vectors
In the previous examples, we created objects with a single value. R actu-
ally uses a vector of length 1 to store this information. Vectors are one-
dimensional data structures that can store multiple data values of the same
type (e.g., character, Boolean, or numeric). See Figure 2.2.

Figure 2.2: Vector Examples.

We can confirm this by using the is.vector() function, which returns whether
or not the inputted argument is a vector.

is.vector(ex_bool)
#> [1] TRUE

One way to create a vector with multiple values is to use the combine function
c(). In the following code, we create two vectors: one with the days of the week
and one with the amount of rain on each day. The first vector has all character
values, and the second one has all numeric values.

days <- c("Monday", "Tuesday", "Wednesday", "Thursday", "Friday")
rain <- c(5, 0.1, 0, 0, 0.4)

Remember, a vector can only store values of the same type. Because of this,
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in the following code, R automatically converts the numeric value to be a
character in order to store these values in a vector together.

c("Monday", 5)
#> [1] "Monday" "5"

The class() function returns the data structure of an object. If we check the
classes of these two objects using the class() function, we see that R tells us
that the first is a character vector, and the second is a numeric vector. This
matches the data type in this case.

class(days)
#> [1] "character"
class(rain)
#> [1] "numeric"

What happens when we create an empty vector? What is the class?

ex_empty <- c()
class(ex_empty)
#> [1] "NULL"

In this case, there is no specified type yet. If we wanted to specify the type,
we could make an empty vector using the vector() function.

ex_empty <- vector(mode = "numeric")
class(ex_empty)
#> [1] "numeric"

Another way to create a vector is with the rep() or seq() functions. The
first function rep(x, times) takes in a vector x and a number of times and
outputs x repeated that many times. Let’s try this with a single value. The
second function seq(from, to, step) takes in a numeric starting value from,
end value to, and step size step and returns a sequence starting at from in
increments of step until a maximum value of to is reached.

rep(0, 5)
#> [1] 0 0 0 0 0
rep("Monday", 4)
#> [1] "Monday" "Monday" "Monday" "Monday"
seq(1, 5, 1)
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#> [1] 1 2 3 4 5
seq(0, -10, -2)
#> [1] 0 -2 -4 -6 -8 -10

2.2.1 Indexing a Vector
Once we have a vector, we may want to access certain values stored in that
vector. To do so, we index the vector using the position of each value: the first
value in the vector has index 1, the second value has index 2, etc. When we
say a vector is one-dimensional, we mean that we can define the position of
each value by a single index. To index the vector, we then use square brackets
[] after the vector name and provide the position. We use these indices to
find the value at index 1 and the value at index 4.

days[1]
#> [1] "Monday"
days[4]
#> [1] "Thursday"

We can either access a single value or a subset of values using a vector of
indices. Let’s see what happens when we use a vector of indices c(1,4) and
then try using -c(1,4) and see what happens. In the first case, we get the
values at index 1 and at index 4. In the second case, we get all values except
at those indices. The - indicates that we want to remove rather than select
these indices.

days[c(1, 4)]
#> [1] "Monday" "Thursday"
days[-c(1, 4)]
#> [1] "Tuesday" "Wednesday" "Friday"

However, always indexing by the index value can sometimes be difficult or
inefficient. One extra feature of vectors is that we can associate a name with
each value. In the subsequent code, we update the names of the vector rain
to be the days of the week and then find Friday’s rain count by indexing with
the name.

names(rain) <- days
print(rain)
#> Monday Tuesday Wednesday Thursday Friday
#> 5.0 0.1 0.0 0.0 0.4
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rain["Friday"]
#> Friday
#> 0.4

The last way to index a vector is to use TRUE and FALSE values. If we
have a vector of Booleans that is the same length as our original vector, then
this returns all the values that correspond to a TRUE value. For example,
indexing the days vector by the logical vector ind_bools returns its first and
fourth values. We will see more about using logic to access certain values later
on.

ind_bools <- c(TRUE, FALSE, FALSE, TRUE, FALSE)
days[ind_bools]
#> [1] "Monday" "Thursday"

2.2.2 Modifying a Vector and Calculations
The mathematical operators we saw in the last chapter (+, -, *, /, ^, %%) can
all be applied to numeric vectors and are applied element-wise. That is, in the
code examples, the two vectors are added together by index. This holds true
for some of the built-in math functions as well:

• exp() - exponential
• log() - log
• sqrt() - square root
• abs() - absolute value
• round() - round to nearest integer value
• ceiling() - round up to the nearest integer value
• floor() - round down to the nearest integer value
• signif(, dig) - round to dig number of significant digits

c(1, 2, 3) + c(1, 1, 1)
#> [1] 2 3 4
c(1, 2, 3) + 1 # equivalent to the code above
#> [1] 2 3 4
sqrt(c(1, 4, 16))
#> [1] 1 2 4
signif(c(0.23, 0.19), dig = 1)
#> [1] 0.2 0.2

After we create a vector, we may need to update its values. For example, we
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may want to change a specific value. We can do so using indexing. We then
update the rain value for Friday using the assignment operator.

rain["Friday"] <- 0.5
rain
#> Monday Tuesday Wednesday Thursday Friday
#> 5.0 0.1 0.0 0.0 0.5

Further, we may need to add extra entries. We can do so using the c() function
again but this time passing in the vector days as our first argument. This
creates a single vector with all previous and new values. In the following code,
we add two days to both vectors and then check the length of the updated
vector rain. The length() function returns the length of a vector.

length(rain)
#> [1] 5
days <- c(days, "Saturday", "Sunday") # add the weekend with no rain
rain <- c(rain,0,0)
length(rain)
#> [1] 7

We can also call some useful functions on vectors. For example, the sum(),
max(), and min() functions returns the sum, maximum value, and minimum
value of a vector, respectively.

2.2.3 Practice Question
Create a vector of the odd numbers from 1 to 11 using the seq() function.
Then, find the third value in the vector using indexing, which should have
value 5.

# Insert your solution here:

2.2.4 Common Vector Functions
The following list contains some of the most common vector functions that are
available in base R. All of these functions assume that the vector is numeric.
If we pass the function a logical vector, R converts the vector to 0/1 first, and
if we pass the function a character vector, R gives us an error message.

• sum() - summation
• median() - median value
• mean() - mean
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• sd() - standard deviation
• var() - variance
• max() - maximum value
• which.max() - index of the first element with the maximum value
• min() - minimum value
• which.min() - index of the first element with the minimum value

Try these out using the vector rain. Note that R is case sensitive - Mean() is
considered different from mean(), so if we type Mean(rain), R tells us that it
cannot find this function.

mean(rain)
#> [1] 0.8
min(rain)
#> [1] 0
which.min(rain)
#> Wednesday
#> 3

We may also be interested in the order of the values. The sort() function sorts
the values of a vector, whereas the order() function returns the permutation
of the elements to be in sorted order. The last line of the following code sorts
the days of the week from smallest to largest rain value.

rain
#> Monday Tuesday Wednesday Thursday Friday
#> 5.0 0.1 0.0 0.0 0.5 0.0 0.0
order(rain)
#> [1] 3 4 6 7 2 5 1
days[order(rain)]
#> [1] "Wednesday" "Thursday" "Saturday" "Sunday" "Tuesday"
#> [6] "Friday" "Monday"

Both of these functions have an extra possible argument decreasing, which
has a default value of FALSE. We can specify this to be TRUE to find the
days of the week sorted from largest to smallest rainfall. Note that in the case
of ties, the first occurrence gets the higher rank.

days[order(rain, decreasing=TRUE)]
#> [1] "Monday" "Friday" "Tuesday" "Wednesday" "Thursday"
#> [6] "Saturday" "Sunday"
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2.3 Factors
A factor is a special kind of vector that behaves like a regular vector except
that it represents values from a category. In particular, a factor keeps track of
all possible values of that category, which are called the levels of the factor.
Factors are especially helpful when we start getting into data analysis and
have categorical columns. The as.factor() function converts a vector to a
factor.

days <- c("Monday", "Tuesday", "Wednesday", "Monday",
"Thursday", "Wednesday")

days_fct <- as.factor(days)

class(days_fct)
#> [1] "factor"
levels(days_fct)
#> [1] "Monday" "Thursday" "Tuesday" "Wednesday"

In the previous example, we did not specify the possible levels for our column.
Instead, R found all values in the vector days and set these equal to the levels
of the factor. Because of this, if we try to change one of the levels to ‘Friday’,
we get an error. Uncomment the following line to see the error message.

#days_fct[2] <- "Friday"

We can avoid this error by specifying the levels using the factor() function
instead of the as.factor() function.

days <- c("Monday", "Tuesday", "Wednesday", "Monday", "Thursday",
"Wednesday")

days_fct <- factor(days,
levels = c("Monday", "Tuesday", "Wednesday",

"Thursday", "Friday", "Saturday", "Sunday"))

class(days_fct)
#> [1] "factor"
levels(days_fct)
#> [1] "Monday" "Tuesday" "Wednesday" "Thursday" "Friday"
#> [6] "Saturday" "Sunday"
days_fct[2] <- "Friday"



24 2 Data Structures in R

Factors can also be used for numeric vectors. For example, we might have a
vector that is 0/1 that represents whether or not a day is a weekend. This can
also only take on certain values (0 or 1).

weekend <- as.factor(c(1, 0, 0, 0, 1, 1))
levels(weekend)
#> [1] "0" "1"

2.4 Matrices
Matrices are similar to vectors in that they store data of the same type. How-
ever, matrices are two-dimensional consisting of both rows and columns (see
Figure 2.3), as opposed to one-dimensional vectors.

Figure 2.3: Matrix Example.

In the following code, we create a matrix reporting the daily rainfall over
multiple weeks. We can create a matrix using the matrix(data, nrow, ncol,
byrow) function. This creates a nrow by ncol matrix from the vector data
values filling in by row if byrow is TRUE and by column otherwise. Run the
code. Then, change the last argument to byrow=FALSE and see what happens
to the values.

rainfall <- matrix(c(5, 6, 0.1, 3, 0, 1, 0, 1, 0.4, 0.2,
0.5, 0.3, 0, 0),

ncol=7, nrow=2, byrow=TRUE)
rainfall
#> [,1] [,2] [,3] [,4] [,5] [,6] [,7]
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#> [1,] 5 6.0 0.1 3.0 0.0 1 0
#> [2,] 1 0.4 0.2 0.5 0.3 0 0

We can find the dimensions of a matrix using the nrow(), ncol(), or dim()
functions, which return the number of rows, the number of columns, and both
the number of rows and columns, respectively.

nrow(rainfall)
#> [1] 2
ncol(rainfall)
#> [1] 7
dim(rainfall)
#> [1] 2 7

2.4.1 Indexing a Matrix
Since matrices are two-dimensional, a single value is indexed by both its row
number and its column number. This means that to access a subset of values
in a matrix, we need to provide row and column indices. In the subsequent
code, we access a single value in the first row and the fourth column. The
first value is always the row index and the second value is always the column
index.

rainfall[1, 4]
#> [1] 3

As before, we can also provide multiple indices to get multiple values. In
the subsequent example, we choose multiple columns, but we can also choose
multiple rows (or multiple rows and multiple columns).

rainfall[1, c(4, 5, 7)]
#> [1] 3 0 0

As with vectors, we can also use Booleans to index a matrix by providing
Boolean values for the rows and/or columns. Note that in the following exam-
ple we give a vector for the row indices and no values for the columns. Since
we did not specify any column indices, this selects all of them.

rainfall[c(FALSE, TRUE), ]
#> [1] 1.0 0.4 0.2 0.5 0.3 0.0 0.0
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Let’s do the opposite and select some columns and all rows.

rainfall[ ,c(TRUE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE)]
#> [,1] [,2]
#> [1,] 5 6.0
#> [2,] 1 0.4

As with vectors, we can specify row names and column names to access entries
instead of using indices. The colnames() and rownames() functions allow us to
specify the column and row names, respectively.

colnames(rainfall) <- c("Monday", "Tuesday", "Wednesday", "Thursday",
"Friday", "Saturday", "Sunday")

rownames(rainfall) <- c("Week1", "Week2")
rainfall["Week1", c("Friday","Saturday")]
#> Friday Saturday
#> 0 1

2.4.2 Modifying a Matrix
If we want to change the values in a matrix, we need to first index those values
and then assign them the new value(s). In the subsequent code chunks, we
change a single entry to be 3 and then update several values to all be 0. Note
that we do not provide multiple 0’s on the right-hand side, as R infers that
all values should be set to 0.

rainfall["Week1", "Friday"] <- 3

rainfall["Week1", c("Monday", "Tuesday")] <- 0
print(rainfall)
#> Monday Tuesday Wednesday Thursday Friday Saturday Sunday
#> Week1 0 0.0 0.1 3.0 3.0 1 0
#> Week2 1 0.4 0.2 0.5 0.3 0 0

Further, we can append values to our matrix by adding rows or columns
through the rbind() and cbind() functions. The first function appends a row
(or multiple rows) to a matrix and the second appends a column (or multiple
columns). Note that in the following example I provide a row and column
name when passing in the additional data. If I hadn’t specified these names,
then those rows and columns would not be named.
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rainfall <- rbind(rainfall, "Week3" = c(0.4, 0.0, 0.0, 0.0, 1.2, 2.2,
0.0))

rainfall <- cbind(rainfall, "Total" = c(7.1, 2.4, 3.8))
print(rainfall)
#> Monday Tuesday Wednesday Thursday Friday Saturday Sunday Total
#> Week1 0.0 0.0 0.1 3.0 3.0 1.0 0 7.1
#> Week2 1.0 0.4 0.2 0.5 0.3 0.0 0 2.4
#> Week3 0.4 0.0 0.0 0.0 1.2 2.2 0 3.8

Here is an example where we bind two matrices by column. Note that whenever
we bind two matrices together, we have to be sure that their dimensions are
compatible and that they are of the same type.

A <- matrix(c(1, 2, 3, 4), nrow=2)
B <- matrix(c(5, 6, 7, 8), nrow=2)
C <- cbind(A, B)
C
#> [,1] [,2] [,3] [,4]
#> [1,] 1 3 5 7
#> [2,] 2 4 6 8

As with vectors, most mathematical operators (+, -, *, /, etc.) are applied
element-wise in R.

A+B
#> [,1] [,2]
#> [1,] 6 10
#> [2,] 8 12

exp(C)
#> [,1] [,2] [,3] [,4]
#> [1,] 2.72 20.1 148 1097
#> [2,] 7.39 54.6 403 2981

2.4.3 Practice Question
Create a 3 × 4 matrix of all 1’s using the rep() and matrix() functions. Then
select the first and third columns using indexing which returns a 3 × 2 matrix
of all 1’s.
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# Insert your solution here:

2.5 Data Frames
Matrices can store data like the rainfall data, where everything is of the same
type. However, if we want to capture more complex data records, we also
want to allow for different measurement types: this is where data frames come
in. A data frame is like a matrix in that data frames are two-dimensional,
but unlike matrices, data frames allow for each column to be a different type
(see Figure 2.4). In this case, each row corresponds to a single data entry (or
observation) and each column corresponds to a different variable.

Figure 2.4: Data Frame Example.

For example, suppose that, for every day in a study, we want to record the
temperature, rainfall, and day of the week. Temperature and rainfall can be
numeric values, but day of the week is character type. We create a data frame
using the data.frame() function. Note that I am providing column names for
each vector (column).

The head() function prints the first six rows of a data frame (to avoid printing
very large datasets). In our case, all the data is shown because we only created
four rows. The column names are displayed as well as their type. By contrast,
the tail() function prints the last six rows of a data frame.

weather_data <- data.frame(day_of_week = c("Monday", "Tuesday",
"Wednesday", "Monday"),

temp = c(70, 62, 75, 50),
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rain = c(5, 0.1, 0.0, 0.5))
head(weather_data)
#> day_of_week temp rain
#> 1 Monday 70 5.0
#> 2 Tuesday 62 0.1
#> 3 Wednesday 75 0.0
#> 4 Monday 50 0.5

The dim(), nrow(), and ncol() functions return the dimensions, number of
rows, and number of columns of a data frame, respectively.

dim(weather_data)
#> [1] 4 3
nrow(weather_data)
#> [1] 4
ncol(weather_data)
#> [1] 3

The column names can be found (or assigned) using the colnames() or names()
function. These were specified when I created the data. On the other hand,
the row names are currently the indices.

colnames(weather_data)
#> [1] "day_of_week" "temp" "rain"
rownames(weather_data)
#> [1] "1" "2" "3" "4"
names(weather_data)
#> [1] "day_of_week" "temp" "rain"

We update the row names to be more informative as with a matrix using the
rownames() function.

rownames(weather_data) <- c("6/1", "6/2", "6/3", "6/8")
head(weather_data)
#> day_of_week temp rain
#> 6/1 Monday 70 5.0
#> 6/2 Tuesday 62 0.1
#> 6/3 Wednesday 75 0.0
#> 6/8 Monday 50 0.5
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2.5.1 Indexing a Data Frame
We can select elements of the data frame using its indices in the same way
as we did with matrices. In the subsequent code, we access a single value and
then a subset of our data frame. The subset returned is itself a data frame.
Note that the second line returns a data frame.

weather_data[1, 2]
#> [1] 70
weather_data[1, c("day_of_week", "temp")]
#> day_of_week temp
#> 6/1 Monday 70

Another useful way to access the columns of a data frame is by using the $
accessor and the column name.

weather_data$day_of_week
#> [1] "Monday" "Tuesday" "Wednesday" "Monday"
weather_data$temp
#> [1] 70 62 75 50

The column day_of_week is a categorical column, but it can only take on a
limited number of values. For this kind of column, it is often useful to convert
that column to a factor as we did before.

weather_data$day_of_week <- factor(weather_data$day_of_week)
levels(weather_data$day_of_week)
#> [1] "Monday" "Tuesday" "Wednesday"

2.5.2 Modifying a Data Frame
As with matrices, we can change values in a data frame by indexing those
entries.

weather_data[1, "rain"] <- 2.2
weather_data
#> day_of_week temp rain
#> 6/1 Monday 70 2.2
#> 6/2 Tuesday 62 0.1
#> 6/3 Wednesday 75 0.0
#> 6/8 Monday 50 0.5
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The rbind() functions and cbind() functions also work for data frames in the
same way as for matrices. However, another way to add a column is to directly
use the $ accessor. We add a categorical column called aq_warning, indicating
whether there was an air quality warning that day.

weather_data$aq_warning <- as.factor(c(1, 0, 0, 0))
weather_data
#> day_of_week temp rain aq_warning
#> 6/1 Monday 70 2.2 1
#> 6/2 Tuesday 62 0.1 0
#> 6/3 Wednesday 75 0.0 0
#> 6/8 Monday 50 0.5 0

2.5.3 Practice Question
Add a column to weather_data called air_quality_index using the rep() func-
tion so that all values are NA (the missing value in R). Then, index the second
value of this column and set the value to be 57. The result should look like
Figure 2.5.

Figure 2.5: Air Quality Data.

# Insert your solution here:

2.6 Lists
A data frame is actually a special type of another data structure called a list,
which is a collection of objects under the same name. These objects can be
vectors, matrices, data frames, or even other lists! There does not have to be
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any relation in size, type, or other attribute between different members of the
list. We create an example list using the list() function, which takes in a
series of objects. What are the types of each element of the following list?

ex_list <- list("John", c("ibuprofen", "metformin"),
c(136, 142, 159))

print(ex_list)
#> [[1]]
#> [1] "John"
#>
#> [[2]]
#> [1] "ibuprofen" "metformin"
#>
#> [[3]]
#> [1] 136 142 159

We can access each element using the index. Note unlike indexing vectors,
using single brackets will return another list which is a sub-list containing the
object at that index.

print(class(ex_list[2]))
#> [1] "list"
ex_list[2]
#> [[1]]
#> [1] "ibuprofen" "metformin"

We can access the actual numeric vector at this index using double brackets.

ex_list[[2]]
#> [1] "ibuprofen" "metformin"

More often, however, it is useful to name the elements of the list for easier
access. Let’s create this list again but, this time, give names to each object.

ex_list <- list(name="John",
medications = c("ibuprofen", "metformin"),
past_weights = c(136, 142, 159))

print(ex_list)
#> $name
#> [1] "John"
#>
#> $medications
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#> [1] "ibuprofen" "metformin"
#>
#> $past_weights
#> [1] 136 142 159
ex_list$medications
#> [1] "ibuprofen" "metformin"

To edit a list, we can use indexing to access different objects in the list and
then assign them to new values. Additionally, we can add objects to the list
using the $ accessor.

ex_list$supplements <- c("vitamin D", "biotin")
ex_list$supplements[2] <- "collagen"
ex_list
#> $name
#> [1] "John"
#>
#> $medications
#> [1] "ibuprofen" "metformin"
#>
#> $past_weights
#> [1] 136 142 159
#>
#> $supplements
#> [1] "vitamin D" "collagen"

2.7 Exercises
1. Recreate the data frame in Figure 2.6 in R, where temperature

and co2 represent the average temperature in Fahrenheit and the
average CO2 concentrations in mg/m3 for the month of January
2008, and name it city_air_quality.

2. Create a character vector named precipitation with entries Yes
or No indicating whether or not there was more precipitation than
average in January 2008 in these cities (you can make this informa-
tion up yourself). Then, append this vector to the city_air_quality
data frame as a new column.
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Figure 2.6: City Air Quality Data.

3. Convert the categorical column precipitation to a factor. Then,
add a row to the data frame city_air_quality using the rbind()
function to match Figure 2.7.

Figure 2.7: Updated City Air Quality Data.

4. Use single square brackets to access the precipitation and CO2 con-
centration entries for San Francisco and Paris in your data frame.
Then, create a list city_list which contains two lists, one for San
Francisco and one for Paris, where each inner list contains the city
name, precipitation, and CO2 concentration information for that
city.
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Working with Data Files in R

In this chapter, we work with data in R. To start, we need to load our data into
R; this requires identifying the type of data file we have (e.g., .csv, .xlsx, .dta,
.txt) and finding the appropriate function to load in the data. This creates a
data frame object containing the information from the file. After demonstrat-
ing how to load in such data, this chapter shows you how to find information
about data columns, including finding missing values, summarizing columns,
and subsetting the data. Additionally, we look at how to create new columns
through some simple transformations.

In this chapter and all future chapters, we load in the required libraries at the
start of the chapter; for example, in this particular chapter, we need a single
package HDSinRdata that contains the sample datasets used in this book.

library(HDSinRdata)

3.1 Importing and Exporting Data
The data we use in this chapter contains information about patients who
visited one of the University of Pittsburgh’s seven pain management clin-
ics. This includes patient-reported pain assessments using the Collaborative
Health Outcomes Information Registry (CHOIR) at baseline and at a 3-month
follow-up (Alter et al. 2021). You can use the help operator ?pain to learn more
about the source of this data and to read its column descriptions. Since this
data is available in our R package, we can use the data() function to load
this data into our environment. Note that this data has 21,659 rows and 92
columns.

data(pain)
dim(pain)
#> [1] 21659 92

35
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In general, the data you will be using is not available in R packages and will
instead exist in one or more data files on your personal computer. In order
to load in this data to R, you need to use the function that corresponds
to the file type you have. For example, you can load a .csv file using the
read.csv() function in base R or using the read_csv() function from the
readr package, both of which were shown in Chapter 1. As an example, we
load the fake_names.csv dataset using both of these functions. Looking at the
print output, we can see that there is a slight difference in the data structure
and data types storing the data between these two functions. The function
read.csv() loads the data as a data frame, whereas the function read_csv()
loads the data as a spec_tbl_df, a special type of data frame called a tibble
that is used by the tidyverse packages. We cover this data structure in more
detail in Chapter 5. For now, note that you can use either function to read in
a .csv file.

read.csv("data/fake_names.csv")
#> Name Age DOB City State
#> 1 Ken Irwin 37 6/28/85 Providence RI
#> 2 Delores Whittington 56 4/28/67 Smithfield RI
#> 3 Daniel Hughes 41 5/22/82 Providence RI
#> 4 Carlos Fain 83 2/2/40 Warren RI
#> 5 James Alford 67 2/23/56 East Providence RI
#> 6 Ruth Alvarez 34 9/22/88 Providence RI

readr::read_csv("data/fake_names.csv", show_col_types=FALSE)
#> # A tibble: 6 x 5
#> Name Age DOB City State
#> <chr> <dbl> <chr> <chr> <chr>
#> 1 Ken Irwin 37 6/28/85 Providence RI
#> 2 Delores Whittington 56 4/28/67 Smithfield RI
#> 3 Daniel Hughes 41 5/22/82 Providence RI
#> 4 Carlos Fain 83 2/2/40 Warren RI
#> 5 James Alford 67 2/23/56 East Providence RI
#> 6 Ruth Alvarez 34 9/22/88 Providence RI

In addition to loading data into R, you may also want to save data from R
into a data file you can access later or share with others. To write a data frame
from R to a .csv file, you can use the write.csv() function. This function has
three key arguments: the first argument is the data frame in R that you want
to write to a file, the second argument is the file name or the full file path
where you want to write the data, and the third argument is whether or not
you want to include the row names as an extra column. In this case, we do
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not include row names. If you do not specify a file path, R saves the file in
our current working directory.

df <- data.frame(x = c( 1, 0, 1), y = c("A", "B", "C"))
write.csv(df, "data/test.csv", row.names=FALSE)

If your data is not in a .csv file, you may need to use another package to read
in the file. The two most common packages are the readxl package (Wickham
and Bryan 2023), which makes it easy to read in Excel files, and the haven
package (Wickham, Miller, and Smith 2023), which can import SAS, SPSS,
and Stata files. For each function, you need to specify the file path to the data
file.

• Tab-Delimited Files: You can read in a tab-separated .txt file using the
read.delim() function in base R.

• Excel Files: You can read in a .xls or .xlsx file using readxl::read_excel(),
which allows you to specify a sheet and/or cell range within a file (e.g.,
read_excel('test.xlsx', sheet="Sheet1")).

• SAS: haven::read_sas() reads in .sas7bdat or .sas7bcat files,
haven::read_xpt() reads in SAS transport files.

• Stata: haven::read_dta() reads in .dta files.

• SPSS: haven::read_spss() reads in .spss files.

3.2 Summarizing and Creating Data Columns
We now look at the data we have loaded into the data frame called pain. We
use the head() function to print the first six rows. However, note that we have
so many columns that not all of the columns are displayed! For those that are
displayed, we can see the data type for each column under the column name.
For example, we can see that the column PATIENT_NUM is a numeric column of
type dbl. Because patients identification numbers are technically nominal in
nature, we might consider whether we should make convert this column to a
factor or a character representation later on. We can use the names() function
to print all the column names. Note that columns X101 to X238 correspond to
numbers on a body pain map (see the data documentation for the image of
this map). Each of these columns has a 1 if the patient indicated that they
have pain in that corresponding body part and a 0 otherwise.
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head(pain)
#> # A tibble: 6 x 92
#> PATIENT_NUM X101 X102 X103 X104 X105 X106 X107 X108 X109
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 13118 0 0 0 0 0 0 0 0 0
#> 2 21384 0 0 0 0 0 0 0 0 0
#> 3 6240 0 0 0 0 0 0 0 0 0
#> 4 1827 0 0 0 0 0 0 0 0 0
#> 5 11309 0 0 0 0 0 0 0 0 0
#> 6 11093 0 0 0 0 0 0 0 0 0
#> # i 82 more variables: X110 <dbl>, X111 <dbl>, X112 <dbl>, X113

<dbl>,↪

#> # X114 <dbl>, X115 <dbl>, X116 <dbl>, X117 <dbl>, X118 <dbl>,
#> # X119 <dbl>, X120 <dbl>, X121 <dbl>, X122 <dbl>, X123 <dbl>,
#> # X124 <dbl>, X125 <dbl>, X126 <dbl>, X127 <dbl>, X128 <dbl>,
#> # X129 <dbl>, X130 <dbl>, X131 <dbl>, X132 <dbl>, X133 <dbl>,
#> # X134 <dbl>, X135 <dbl>, X136 <dbl>, X201 <dbl>, X202 <dbl>,
#> # X203 <dbl>, X204 <dbl>, X205 <dbl>, X206 <dbl>, X207 <dbl>, ...
names(pain)
#> [1] "PATIENT_NUM"
#> [2] "X101"
#> [3] "X102"
#> [4] "X103"
#> [5] "X104"
#> [6] "X105"
#> [7] "X106"
#> [8] "X107"
#> [9] "X108"
#> [10] "X109"
#> [11] "X110"
#> [12] "X111"
#> [13] "X112"
#> [14] "X113"
#> [15] "X114"
#> [16] "X115"
#> [17] "X116"
#> [18] "X117"
#> [19] "X118"
#> [20] "X119"
#> [21] "X120"
#> [22] "X121"
#> [23] "X122"
#> [24] "X123"
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#> [25] "X124"
#> [26] "X125"
#> [27] "X126"
#> [28] "X127"
#> [29] "X128"
#> [30] "X129"
#> [31] "X130"
#> [32] "X131"
#> [33] "X132"
#> [34] "X133"
#> [35] "X134"
#> [36] "X135"
#> [37] "X136"
#> [38] "X201"
#> [39] "X202"
#> [40] "X203"
#> [41] "X204"
#> [42] "X205"
#> [43] "X206"
#> [44] "X207"
#> [45] "X208"
#> [46] "X209"
#> [47] "X210"
#> [48] "X211"
#> [49] "X212"
#> [50] "X213"
#> [51] "X214"
#> [52] "X215"
#> [53] "X216"
#> [54] "X217"
#> [55] "X218"
#> [56] "X219"
#> [57] "X220"
#> [58] "X221"
#> [59] "X222"
#> [60] "X223"
#> [61] "X224"
#> [62] "X225"
#> [63] "X226"
#> [64] "X227"
#> [65] "X228"
#> [66] "X229"
#> [67] "X230"



40 3 Working with Data Files in R

#> [68] "X231"
#> [69] "X232"
#> [70] "X233"
#> [71] "X234"
#> [72] "X235"
#> [73] "X236"
#> [74] "X237"
#> [75] "X238"
#> [76] "PAIN_INTENSITY_AVERAGE"
#> [77] "PROMIS_PHYSICAL_FUNCTION"
#> [78] "PROMIS_PAIN_BEHAVIOR"
#> [79] "PROMIS_DEPRESSION"
#> [80] "PROMIS_ANXIETY"
#> [81] "PROMIS_SLEEP_DISTURB_V1_0"
#> [82] "PROMIS_PAIN_INTERFERENCE"
#> [83] "GH_MENTAL_SCORE"
#> [84] "GH_PHYSICAL_SCORE"
#> [85] "AGE_AT_CONTACT"
#> [86] "BMI"
#> [87] "CCI_TOTAL_SCORE"
#> [88] "PAIN_INTENSITY_AVERAGE.FOLLOW_UP"
#> [89] "PAT_SEX"
#> [90] "PAT_RACE"
#> [91] "CCI_BIN"
#> [92] "MEDICAID_BIN"

Recall that the $ operator can be used to access a single column. Alternatively,
we can use double brackets [[]] to select a column. We demonstrate both
ways to print the first five values in the column with the patient’s average
pain intensity.

pain$PAIN_INTENSITY_AVERAGE[1:5]
#> [1] 7 5 4 7 8
pain[["PAIN_INTENSITY_AVERAGE"]][1:5]
#> [1] 7 5 4 7 8

3.2.1 Column Summaries
To explore the range and distribution of a column’s values, we can use some
of the base R functions. For example, the summary() function is a useful way
to summarize a numeric column’s values. We can see that the pain intensity
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values range from 0 to 10 with a median value of 7 and that there is a NA
value.

summary(pain$PAIN_INTENSITY_AVERAGE)
#> Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
#> 0.00 5.00 7.00 6.49 8.00 10.00 1

We have already seen the max(), min(), mean(), and median() functions that
could have computed some of these values for us separately. Since we do have
an NA value, we add the na.rm=TRUE argument to these functions. Without
this argument, the returned value for all of the functions is NA.

min(pain$PAIN_INTENSITY_AVERAGE, na.rm=TRUE)
#> [1] 0
max(pain$PAIN_INTENSITY_AVERAGE, na.rm=TRUE)
#> [1] 10
mean(pain$PAIN_INTENSITY_AVERAGE, na.rm=TRUE)
#> [1] 6.49
median(pain$PAIN_INTENSITY_AVERAGE, na.rm=TRUE)
#> [1] 7

Additionally, the following functions are helpful for summarizing quantitative
columns.

• range() - returns the minimum and maximum values for a numeric vector
x.

• quantile() - returns the sample quantiles for a numeric vector.
• IQR() - returns the interquartile range for a numeric vector.

By default, the quantile() function returns the sample quantiles.

quantile(pain$PAIN_INTENSITY_AVERAGE, na.rm = TRUE)
#> 0% 25% 50% 75% 100%
#> 0 5 7 8 10

However, we can pass in a list of probabilities to use instead. For example,
in the following code we find the 0.1 and 0.9 quantiles. Again, we add the
na.rm=TRUE argument.

quantile(pain$PAIN_INTENSITY_AVERAGE, probs = c(0.1, 0.9), na.rm=TRUE)
#> 10% 90%
#> 4 9
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We can also plot a histogram of the sample distribution using the hist()
function. We look more in depth at how to change aspects of this histogram
in Chapter 4.

hist(pain$PAIN_INTENSITY_AVERAGE)

Histogram of pain$PAIN_INTENSITY_AVERAGE
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3.2.2 Practice Question
Summarize the PROMIS_SLEEP_DISTURB_V1_0 column both numerically and vi-
sually. Your results should look like the results in Figure 3.1.

# Insert your solution here:

We can also use the summary() function for categorical variables. In this case,
R finds the counts for each level.

summary(pain$PAT_SEX)
#> Length Class Mode
#> 21659 character character

For categorical columns, it is also useful to use the table() function, which
returns the counts for each possible value, instead of the summary() function.
By default, table() ignores NA values. However, we can set useNA="always"
if we also want to display the number of NA values in the table output. Ad-
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Figure 3.1: Summarizing a Column.

ditionally, we can use the prop.table() function to convert the counts to
proportions. Using these functions, we can see that the column PAT_SEX col-
umn, which corresponds to the reported patient sex, has a single missing value,
and we can also see that around 60% of patients are female.

table(pain$PAT_SEX, useNA="always")
#>
#> female male <NA>
#> 13102 8556 1

prop.table(table(pain$PAT_SEX))
#>
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#> female male
#> 0.605 0.395

Note that this column is not actually a factor column yet, which we can check
using the is.factor() function. We can convert it to one using as.factor().

is.factor(pain$PAT_SEX)
#> [1] FALSE

pain$PAT_SEX <- as.factor(pain$PAT_SEX)
is.factor(pain$PAT_SEX)
#> [1] TRUE

3.2.3 Other Summary Functions
Sometimes we want to summarize information across multiple columns or
rows. We can use the rowSums() and colSums() functions to sum over the
rows or columns of a matrix or data frame. We first subset the data to the
body pain map regions. In the first line of code, I select the column names
pertaining to these columns. This allows me to select those columns in the
second line of code and store this subset of the data as a new data frame called
pain_body_map.

body_map_cols <- names(pain)[2:75]
pain_body_map <- pain[, body_map_cols]
head(pain_body_map)
#> # A tibble: 6 x 74
#> X101 X102 X103 X104 X105 X106 X107 X108 X109 X110 X111
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 0 0 0 0 0 0 0 0 0 0 0
#> 2 0 0 0 0 0 0 0 0 0 0 0
#> 3 0 0 0 0 0 0 0 0 0 0 0
#> 4 0 0 0 0 0 0 0 0 0 0 0
#> 5 0 0 0 0 0 0 0 0 0 0 0
#> 6 0 0 0 0 0 0 0 0 0 1 0
#> # i 63 more variables: X112 <dbl>, X113 <dbl>, X114 <dbl>, X115

<dbl>,↪

#> # X116 <dbl>, X117 <dbl>, X118 <dbl>, X119 <dbl>, X120 <dbl>,
#> # X121 <dbl>, X122 <dbl>, X123 <dbl>, X124 <dbl>, X125 <dbl>,
#> # X126 <dbl>, X127 <dbl>, X128 <dbl>, X129 <dbl>, X130 <dbl>,
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#> # X131 <dbl>, X132 <dbl>, X133 <dbl>, X134 <dbl>, X135 <dbl>,
#> # X136 <dbl>, X201 <dbl>, X202 <dbl>, X203 <dbl>, X204 <dbl>,
#> # X205 <dbl>, X206 <dbl>, X207 <dbl>, X208 <dbl>, X209 <dbl>, ...

I now compute the row sums and column sums on this subset of data. The
row sum for each patient is the total number of body parts in which they
experience pain, whereas the column sum for each pain region is the total
number of patients who experience pain in that area. The following histogram
shows that most people select a low number of total regions.

hist(rowSums(pain_body_map))

Histogram of rowSums(pain_body_map)
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We can also see that some body parts are more often selected than others. We
create a vector called perc_patients by finding the number of patients who
selected each region divided by the total number of patients. The histogram
shows that some body regions are selected by over 50% of patients!

perc_patients <- colSums(pain_body_map, na.rm=TRUE) /
nrow(pain_body_map)

hist(perc_patients)
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Histogram of perc_patients
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We use the which.max() function to see that the 55th region X219 is selected
the most number of times. This corresponds to lower back pain.

which.max(perc_patients)
#> X219
#> 55

Another pair of useful functions are pmin() and pmax(). These functions take
at least two vectors and find the pairwise minimum or maximum across those
vectors, as shown in the subsequent code.

v1 = c(5, 9, 12)
v2 = c(2, 18, 4)
pmax(v1, v2)
#> [1] 5 18 12

Looking back at the pain data, if we want to create a new column
lower_back_pain that corresponds to whether someone selects either X218
or X219 we can use the pmax() function to find the maximum value between
columns X218 and X219. We can see that almost 60% of patients select at least
one of these regions.

lower_back <- pmax(pain_body_map$X218, pain_body_map$X219)
prop.table(table(lower_back))
#> lower_back
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#> 0 1
#> 0.405 0.595

We might want to store the total number of pain regions and our indicator of
whether or not a patient has lower back pain as new columns. We create new
columns in the pain data using the $ operator in the previous code chunk. To
be consistent with the column naming in the data, we use all uppercase for
our column names. The dim() function shows that our data has grown by two
columns, as expected.

pain$NUM_REGIONS <- rowSums(pain_body_map)
pain$LOWER_BACK <- lower_back
dim(pain)
#> [1] 21659 94

Another useful function that allows us to perform computations over the rows
or columns of a matrix or data frame is the apply(X, MARGIN, FUN) function,
which takes in three arguments. The first argument is a data frame or matrix
X, the second argument MARGIN indicates whether to compute over the rows (1)
or columns (2), and the last argument is the function FUN to apply across that
margin. The subsequent code finds the maximum value for each row in the
data frame pain_body_map. Taking the minimum value of the row maximum
values shows that every patient selected at least one body map region.

any_selected <- apply(pain_body_map, 1, max)
min(any_selected, na.rm=TRUE)
#> [1] 1

In a second example, we find the sum of the body pain regions over the
columns, which is equivalent to the previous example using colSums(). In this
case, we added the na.rm=TRUE argument. The apply() function passes any
additional arguments to the function FUN.

perc_patients <- apply(pain_body_map, 2, sum, na.rm=TRUE) /
nrow(pain_body_map)

summary(perc_patients)
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> 0.032 0.070 0.136 0.144 0.181 0.542
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3.2.4 Practice Question
Find the sum of each of the PROMIS measures across all patients using ap-
ply() and then using colSums(). Verify that these two methods return the
same result, which is given in Figure 3.2.

Figure 3.2: Summing Across Columns.

# Insert your solution here:

3.2.5 Missing, Infinite, and NaN Values
As we have seen, this data contains some missing values, which are represented
as NA in R. R treats these values as if they were unknown, which is why we
have to add the na.rm=TRUE argument to functions like sum() and max(). In
the following example, we can see that R figures out that 1 plus an unknown
number is also unknown!

NA+1
#> [1] NA

We can determine whether a value is missing using the function is.na(). This
function returns TRUE if the value is NA, and FALSE otherwise. We can then
sum up these values for a single column since each TRUE value corresponds
to a value of 1, and each FALSE corresponds to a value of 0. We observe that
there is a single NA value for the column PATIENT_NUM, which is the patient
ID number.

sum(is.na(pain$PATIENT_NUM))
#> [1] 1

If we want to calculate the sum of NA values for each column instead of just
a single column, we can use the apply() function. Since we want to apply this
computation over the columns, the second argument has value 2. Recall that
the last argument is the function we want to call for each column. In this case,
we want to apply the combination of the sum() and is.na() function. To do
so, we have to specify this function ourselves. This is called an anonymous
function , since it doesn’t have a name.
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num_missing_col <- apply(pain, 2, function(x) sum(is.na(x)))
min(num_missing_col)
#> [1] 1

Interestingly, we can see that there is at least one missing value in each column.
It might be the case that there is a row with all NA values. Let’s apply the
same function by row. Taking the maximum, we can see that row 11749 has
all NA values.

num_missing_row <- apply(pain, 1, function(x) sum(is.na(x)))
max(num_missing_row)
#> [1] 94
which.max(num_missing_row)
#> [1] 11749

We remove that row and then find the percentage of missing values by column.
We can see that the column with the highest percentage of missing values is
the pain intensity at follow-up. In fact, only 33% of patients have a recorded
follow-up visit.

pain <- pain[-11749, ]
num_missing_col <- apply(pain, 2,

function(x) sum(is.na(x))/nrow(pain))
num_missing_col
#> PATIENT_NUM X101
#> 0.00000 0.00000
#> X102 X103
#> 0.00000 0.00000
#> X104 X105
#> 0.00000 0.00000
#> X106 X107
#> 0.00000 0.00000
#> X108 X109
#> 0.00000 0.00000
#> X110 X111
#> 0.00000 0.00000
#> X112 X113
#> 0.00000 0.00000
#> X114 X115
#> 0.00000 0.00000
#> X116 X117
#> 0.00000 0.00000



50 3 Working with Data Files in R

#> X118 X119
#> 0.00000 0.00000
#> X120 X121
#> 0.00000 0.00000
#> X122 X123
#> 0.00000 0.00000
#> X124 X125
#> 0.00000 0.00000
#> X126 X127
#> 0.00000 0.00000
#> X128 X129
#> 0.00000 0.00000
#> X130 X131
#> 0.00000 0.00000
#> X132 X133
#> 0.00000 0.00000
#> X134 X135
#> 0.00000 0.00000
#> X136 X201
#> 0.00000 0.00000
#> X202 X203
#> 0.00000 0.00000
#> X204 X205
#> 0.00000 0.00000
#> X206 X207
#> 0.00000 0.00000
#> X208 X209
#> 0.00000 0.00000
#> X210 X211
#> 0.00000 0.00000
#> X212 X213
#> 0.00000 0.00000
#> X214 X215
#> 0.00000 0.00000
#> X216 X217
#> 0.00000 0.00000
#> X218 X219
#> 0.00000 0.00000
#> X220 X221
#> 0.00000 0.00000
#> X222 X223
#> 0.00000 0.00000
#> X224 X225
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#> 0.00000 0.00000
#> X226 X227
#> 0.00000 0.00000
#> X228 X229
#> 0.00000 0.00000
#> X230 X231
#> 0.00000 0.00000
#> X232 X233
#> 0.00000 0.00000
#> X234 X235
#> 0.00000 0.00000
#> X236 X237
#> 0.00000 0.00000
#> X238 PAIN_INTENSITY_AVERAGE
#> 0.00000 0.00000
#> PROMIS_PHYSICAL_FUNCTION PROMIS_PAIN_BEHAVIOR
#> 0.00000 0.29412
#> PROMIS_DEPRESSION PROMIS_ANXIETY
#> 0.00402 0.00402
#> PROMIS_SLEEP_DISTURB_V1_0 PROMIS_PAIN_INTERFERENCE
#> 0.00402 0.00697
#> GH_MENTAL_SCORE GH_PHYSICAL_SCORE
#> 0.13602 0.13602
#> AGE_AT_CONTACT BMI
#> 0.00000 0.26004
#> CCI_TOTAL_SCORE PAIN_INTENSITY_AVERAGE.FOLLOW_UP
#> 0.00000 0.67042
#> PAT_SEX PAT_RACE
#> 0.00000 0.00651
#> CCI_BIN MEDICAID_BIN
#> 0.00000 0.01385
#> NUM_REGIONS LOWER_BACK
#> 0.00000 0.00000

We create two new columns: first, we create a column for the change in pain
at follow-up, and second, we create a column for the percent change in pain
at follow-up.

pain$PAIN_CHANGE <- pain$PAIN_INTENSITY_AVERAGE.FOLLOW_UP -
pain$PAIN_INTENSITY_AVERAGE

hist(pain$PAIN_CHANGE)
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Histogram of pain$PAIN_CHANGE
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pain$PERC_PAIN_CHANGE <- pain$PAIN_CHANGE /
pain$PAIN_INTENSITY_AVERAGE

summary(pain$PERC_PAIN_CHANGE)
#> Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
#> -1 0 0 Inf 0 Inf 14520

In the summary of the percent change, we can see that the maximum value
is Inf. This is R’s representation of infinity. This occurred because some pa-
tients have an initial pain score of 0, which creates infinite values when we
divide through by this value to find the percent change. We can test whether
something is infinite using the is.infinite() or is.finite() functions. This
shows that there were three patients with infinite values. The value -Inf is
used to represent negative infinity.

sum(is.infinite(pain$PERC_PAIN_CHANGE))
#> [1] 3

Another special value in R is NaN, which stands for “Not a Number”. For
example, 0/0 results in a NaN value. We can test for NaN values using the
is.nan() function.

0/0
#> [1] NaN
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Looking back at the missing values, there are two useful functions for select-
ing the complete cases in a data frame. The na.omit() function returns the
data frame with incomplete cases removed, whereas complete.cases() returns
TRUE/FALSE values for each row indicating whether each row is complete,
which we can then use to select the rows with TRUE values. In the following
code, we see that both approaches select the same number of rows.

pain_sub1 <- na.omit(pain)
pain_sub2 <- pain[complete.cases(pain), ]
dim(pain_sub1)
#> [1] 2413 96
dim(pain_sub2)
#> [1] 2413 96

3.2.6 Dates in R
The columns in the pain data contain character and numeric values. One spe-
cial type of character column that is not present is a column that corresponds
to a date or date-time. By default, read.csv() reads these columns in as char-
acter columns, whereas the read_csv() function from the readr package in
the tidyverse family recognizes common date formats. If we have a charac-
ter column, we can convert to a date object using as.Date() for date columns
and as.POSIXct() for date-time columns. For columns with only a time but no
date, you can add a date or use the hms package (Müller 2023), which is not
demonstrated here. These functions automatically try to detect the format of
the inputted string, but it is often helpful to provide the format and time zone
tz. To input our format we use the following key.

Symbol Description
%Y Four-digit year.
%y Two-digit year.
%m Numeric month.
%b% Abbreviated name of month.
%B Full name of month.
%d Numeric day of the month.
%H Military time hour (24 hours).
%I Imperial time hour (12 hours).
%M Minute.
%S Seconds.
%p AM/PM
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date_example <- data.frame(x = c("2020-01-15", "2021-11-16",
"2019-08-01"),

y = c("2020-01-15 3:14 PM",
"2021-11-16 5:00 AM",
"2019-08-01 3:00 PM"),

z = c("04:10:00", "11:35:11", "18:00:45"))

# Convert date and date times using formats
date_example$x <- as.Date(date_example$x, format = "%Y-%m-%d",

tz = "EST")
date_example$y <- as.POSIXct(date_example$y,

format = "%Y-%m-%d %I:%M %p")

# Add date to z and convert
date_example$z <- paste("2024-06-24", date_example$z)
date_example$z <- as.POSIXct(date_example$z,

format = "%Y-%m-%d %H:%M:%S")
date_example
#> x y z
#> 1 2020-01-15 2020-01-15 15:14:00 2024-06-24 04:10:00
#> 2 2021-11-16 2021-11-16 05:00:00 2024-06-24 11:35:11
#> 3 2019-08-01 2019-08-01 15:00:00 2024-06-24 18:00:45

By recognizing these columns as dates, we can find the time between two
dates using the difftime() function. This function takes in two times time1
and time2 and finds the difference time1 - time2 in the given units.

difftime(date_example$x[2], date_example$x[1], units = "days")
#> Time difference of 671 days

Additionally, we can use the seq() function to add or subtract time by speci-
fying a unit for by.

seq(date_example$x[1], by = "month", length = 3)
#> [1] "2020-01-15" "2020-02-15" "2020-03-15"

For those interested in doing more manipulations with dates, the lubridate
package (Spinu, Grolemund, and Wickham 2023) in the tidyverse expands
upon the base functionality of R for working with dates. This package uses its
own date-time class and includes functions to easily extract information from
and manipulate dates.
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3.3 Using Logic to Subset, Summarize, and Transform
We have already seen how to use TRUE/FALSE values to select rows in a
data frame. The following logic operators in R allow us to expand on this
capability to write more complex logic.

• < less than
• <= less than or equal to
• > greater than
• >= greater than or equal to
• == equal to
• != not equal to
• a %in% b a’s value is in a vector of values b

The first six operators are a direct comparison between two values.

2 < 2
#> [1] FALSE
2 <= 2
#> [1] TRUE
3 > 2
#> [1] TRUE
3 >= 2
#> [1] TRUE
"A" == "B"
#> [1] FALSE
"A" != "B"
#> [1] TRUE

The operators assume there is a natural ordering or comparison between values.
For example, for strings the ordering is alphabetical and for logical operators
we use their numeric interpretation (TRUE = 1, FALSE = 0).

"A" < "B"
#> [1] TRUE
TRUE < FALSE
#> [1] FALSE

The %in% operator is slightly different. This operator checks whether a value
is in a set of possible values. For example, we can check whether values are in
the set c(4,1,2).
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1 %in% c(4, 1, 2)
#> [1] TRUE
c(0, 1, 5) %in% c(4, 1, 2)
#> [1] FALSE TRUE FALSE

Additionally, we can use the following operators, which allow us to negate or
combine logical operators.

• !x - the NOT operator ! reverses TRUE/FALSE values
• x | y - the OR operator | checks whether either x or y is equal to TRUE
• x & y - the AND operator & checks whether both x and y are equal to TRUE
• xor(x,y) - the xor function checks whether exactly one of x or y is equal to

TRUE (called exclusive or)
• any(x) - the any function checks whether any value in x is TRUE (equivalent

to using an OR operator | between all values)
• all(x) - the all function checks whether all values in x are TRUE (equivalent

to using an AND operator & between all values)

Some simple examples for each are given in the following code chunk.

!(2 < 3)
#> [1] FALSE
("Alice" < "Bob") | ("Alice" < "Aaron")
#> [1] TRUE
("Alice" < "Bob") & ("Alice" < "Aaron")
#> [1] FALSE
xor(TRUE, FALSE)
#> [1] TRUE
any(c(FALSE, TRUE, TRUE))
#> [1] TRUE
all(c(FALSE, TRUE, TRUE))
#> [1] FALSE

Let’s demonstrate these operators on the pain data. We first update the Med-
icaid column by making the character values more informative. The logic on
the left-hand side selects those who do or do not have Medicaid and then
assigns those values to the new ones.

pain$MEDICAID_BIN[pain$MEDICAID_BIN == "no"] <- "No Medicaid"
pain$MEDICAID_BIN[pain$MEDICAID_BIN == "yes"] <- "Medicaid"
table(pain$MEDICAID_BIN)
#>
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#> Medicaid No Medicaid
#> 4601 16757

Additionally, we could subset the data to only those who have a follow-up. The
not operator ! reverses the TRUE/FALSE values returned from the is.na()
function. Therefore, the new value is TRUE if the follow-up value is not NA.

pain_follow_up <- pain[!is.na(pain$PAIN_INTENSITY_AVERAGE.FOLLOW_UP),
]↪

Earlier, we created a column indicating whether or not a patient has lower back
pain. We now use the any() function to check whether a patient has general
back pain. If at least one of these values is equal to 1, then the function returns
TRUE. If we had used the all() function instead, this would check whether
all values are equal to 1, indicating that a patient has pain in their whole
back.

pain$BACK <- any(pain$X208==1, pain$X209==1, pain$X212==1,
pain$X213==1, pain$X218==1, pain$X219==1)

3.3.1 Practice Question
Subset the pain data to those who have a follow-up and have an initial average
pain intensity of 5 or above. Name this subset of the data pain_subset. Print
the head of this data. The first six patient IDs in this new dataset should be
13118, 21384, 1827, 11309, 11093, and 14667.

# Insert your solution here:

Lastly, we look at the column for patient race PAT_RACE. The table() function
shows that most patients are WHITE or BLACK. Given how few observations are
in the other categories, we may want to combine some of these levels into one.

table(pain$PAT_RACE)
#>
#> ALASKA NATIVE AMERICAN INDIAN BLACK
#> 2 58 3229
#> CHINESE DECLINED FILIPINO
#> 21 121 6
#> GUAM/CHAMORRO HAWAIIAN INDIAN (ASIAN)
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#> 1 1 49
#> JAPANESE KOREAN NOT SPECIFIED
#> 9 10 4
#> OTHER OTHER ASIAN OTHER PACIFIC ISLANDER
#> 1 47 12
#> VIETNAMESE WHITE
#> 6 17940

Another way we could have found all possible values for this column is to use
the unique() function. This function takes in a data frame or vector x and
returns x with all duplicate rows or values removed.

unique(pain$PAT_RACE)
#> [1] "WHITE" "BLACK"
#> [3] "DECLINED" "AMERICAN INDIAN"
#> [5] "INDIAN (ASIAN)" "ALASKA NATIVE"
#> [7] NA "FILIPINO"
#> [9] "JAPANESE" "VIETNAMESE"
#> [11] "KOREAN" "CHINESE"
#> [13] "OTHER ASIAN" "NOT SPECIFIED"
#> [15] "HAWAIIAN" "OTHER PACIFIC ISLANDER"
#> [17] "OTHER" "GUAM/CHAMORRO"

To combine some of these levels, we can use the %in% operator. We first create
an Asian, Asian American, or Pacific Islander race category and then create
an American Indian or Alaska Native category.

aapi_values <- c("CHINESE", "HAWAIIAN", "INDIAN (ASIAN)", "FILIPINO",
"VIETNAMESE", "JAPANESE", "KOREAN", "GUAM/CHAMORRO",
"OTHER ASIAN", "OTHER PACIFIC ISLANDER")

pain$PAT_RACE[pain$PAT_RACE %in% aapi_values] <- "AAPI"
pain$PAT_RACE[pain$PAT_RACE %in%

c("ALASKA NATIVE", "AMERICAN INDIAN")] <- "AI/AN"
table(pain$PAT_RACE)
#>
#> AAPI AI/AN BLACK DECLINED NOT SPECIFIED
#> 162 60 3229 121 4
#> OTHER WHITE
#> 1 17940
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3.3.2 Other Selection Functions
In the previous code, we selected rows using TRUE/FALSE Boolean values.
Instead, we could have also used the which() function. This function takes
TRUE/FALSE values and returns the index values for all the TRUE values.
We use this to treat those with race given as DECLINED as not specified.

pain$PAT_RACE[which(pain$PAT_RACE == "DECLINED")] <- "NOT SPECIFIED"

Another selection function is the subset() function. This function takes in two
arguments. The first is the vector, matrix, or data frame to select from, and
the second is a vector of TRUE/FALSE values to use for row selection. We
use this to find the observation with race marked as OTHER. We then update
this race to also be marked as not specified.

subset(pain, pain$PAT_RACE == "OTHER")
#> # A tibble: 1 x 97
#> PATIENT_NUM X101 X102 X103 X104 X105 X106 X107 X108 X109
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 3588 1 1 1 0 1 1 1 0 0
#> # i 87 more variables: X110 <dbl>, X111 <dbl>, X112 <dbl>, X113

<dbl>,↪

#> # X114 <dbl>, X115 <dbl>, X116 <dbl>, X117 <dbl>, X118 <dbl>,
#> # X119 <dbl>, X120 <dbl>, X121 <dbl>, X122 <dbl>, X123 <dbl>,
#> # X124 <dbl>, X125 <dbl>, X126 <dbl>, X127 <dbl>, X128 <dbl>,
#> # X129 <dbl>, X130 <dbl>, X131 <dbl>, X132 <dbl>, X133 <dbl>,
#> # X134 <dbl>, X135 <dbl>, X136 <dbl>, X201 <dbl>, X202 <dbl>,
#> # X203 <dbl>, X204 <dbl>, X205 <dbl>, X206 <dbl>, X207 <dbl>, ...

pain$PAT_RACE[pain$PATIENT_NUM==3588] <- "NOT SPECIFIED"
table(pain$PAT_RACE)
#>
#> AAPI AI/AN BLACK NOT SPECIFIED WHITE
#> 162 60 3229 126 17940

3.4 Exercises
For these exercises, we use the pain data from the HDSinRdata package.
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1. Print summary statistics for the PROMIS_PHYSICAL_FUNCTION and
PROMIS_ANXIETY columns in this dataset. Read the data documen-
tation for these two columns, which both have range 0 to 100, and
then comment on the distributions of these columns.

2. Create frequency tables for the values of PAT_SEX and PAT_RACE and
summarize what these tables tell you about the distributions of
these demographic characteristics.

3. Create a new data frame called pain.new that doesn’t con-
tain patients with NA values for both GH_MENTAL_SCORE and
GH_PHYSICAL_SCORE, which are the PROMIS global mental and phys-
ical scores, respectively.

4. Create a vector of the proportion of patients who reported pain in
each of the pain regions. Then, find the minimum, median, mean,
maximum, standard deviation, and variance of this vector.

5. Calculate the median and interquartile range of the distribution of
the total number of painful leg regions selected for each patient.
Then, write a few sentences explaining anything interesting you
observe about this distribution in the context of this dataset.

6. Look at the distribution of average pain intensity between patients
with only one pain region selected vs. those with more than one
region selected. What do you notice?

7. Create a histogram to plot the distribution of the
PAIN_INTENSITY_AVERAGE.FOLLOW_UP column. Then, create a ta-
ble summarizing how many patients had missing values in this
column. Finally, choose two columns to compare the distribution
between those with and without missing follow-up. What do you
notice?



Part II

Exploratory Analysis





4
Intro to Exploratory Data Analysis

In the last chapter, we learned about loading data into R and practiced se-
lecting and summarizing columns and rows of the data. In this chapter, we
learn how to conduct more exploratory analysis, focusing on the univariate
and bivariate sample distributions of the data. The first half focuses on using
base R to create basic plots and summaries. In the second half, we show how
to create summary plots using the GGally package (Schloerke et al. 2021)
and tables using the gt (Iannone et al. 2023) and gtsummary (Sjoberg et al.
2023) packages.

library(HDSinRdata)
library(GGally)
library(gt)
library(gtsummary)

4.1 Univariate Distributions
In this chapter, we use a sample of the National Health and Nutrition Exami-
nation Survey (Centers for Disease Control and Prevention (CDC) 1999-2018)
containing lead, blood pressure, BMI, smoking status, alcohol use, and demo-
graphic variables from NHANES 1999-2018. Variable selection and feature
engineering followed the analysis in Huang (2022). There are 31,625 observa-
tions in this sample. Use the help operator ?NHANESsample to read the column
descriptions.

data(NHANESsample)
dim(NHANESsample)
#> [1] 31265 21
names(NHANESsample)
#> [1] "ID" "AGE" "SEX" "RACE"
#> [5] "EDUCATION" "INCOME" "SMOKE" "YEAR"

63
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#> [9] "LEAD" "BMI_CAT" "LEAD_QUANTILE" "HYP"
#> [13] "ALC" "DBP1" "DBP2" "DBP3"
#> [17] "DBP4" "SBP1" "SBP2" "SBP3"
#> [21] "SBP4"

To start our exploration, we look at whether there are any missing values. We
use the complete.cases() function to observe that there are no complete cases.
We also see that the subsequent blood pressure measurements and alcohol use
have the highest percentage of missing values. For demonstration, we choose to
only keep the first systolic and diastolic blood pressure measurements and do
a complete case analysis using the na.omit() function to define our complete
data frame nhanes_df.

sum(complete.cases(NHANESsample))
#> [1] 0
apply(NHANESsample, 2, function(x) sum(is.na(x)))/nrow(NHANESsample)
#> ID AGE SEX RACE EDUCATION
#> 0.000000 0.000000 0.000000 0.000000 0.000672
#> INCOME SMOKE YEAR LEAD BMI_CAT
#> 0.000000 0.000000 0.000000 0.000000 0.000000
#> LEAD_QUANTILE HYP ALC DBP1 DBP2
#> 0.000000 0.000000 0.026867 0.060035 0.063905
#> DBP3 DBP4 SBP1 SBP2 SBP3
#> 0.070974 0.891124 0.060035 0.063905 0.070942
#> SBP4
#> 0.891124

nhanes_df <- na.omit(subset(NHANESsample,
select = -c(SBP2, SBP3, SBP4, DBP2, DBP3,

DBP4)))

In the last chapter, we introduced the table() and summary() functions to
quickly summarize categorical and quantitative vectors. We can observe that
over half of the observations never smoked and that the most recent NHANES
cycle in the data is 2017-2018.

table(nhanes_df$SMOKE)
#>
#> NeverSmoke QuitSmoke StillSmoke
#> 13774 8019 6799
summary(nhanes_df$YEAR)
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#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> 1999 2003 2007 2008 2011 2017

We decide to select the most recent observations from NHANES 2017-2018
for our analysis in this chapter. We use the subset() function to select these
rows.

nhanes_df <- subset(nhanes_df, nhanes_df$YEAR == 2017)

As shown, smoking status has been coded into three categories: “NeverSmoke”,
“QuitSmoke”, and “StillSmoke”. We want to create a new column to represent
whether someone has ever smoked. To do so, we use the ifelse() function,
which allows us to create a new vector using logic. The logic captured by this
function is that we want to use one value if we meet some condition, and we
want to use a second value if the condition is not met. The first argument is a
vector of TRUE/FALSE values representing the conditions, the next argument
is the value or vector to use if we meet the condition(s), and the last argument
is the value or vector to use otherwise. We use this function to create a new
vector EVER_SMOKE that is equal to “Yes” for those who are either still smoking
or quit smoking and equal to “No” otherwise.

nhanes_df$EVER_SMOKE <- ifelse(nhanes_df$SMOKE %in% c("QuitSmoke",
"StillSmoke"),

"Yes", "No")
table(nhanes_df$EVER_SMOKE)
#>
#> No Yes
#> 1411 1173

If we did not want to store this new column, we could use the pipe operator
|> to send the output directly to the table() function. The pipe operator
takes the result on the left-hand side and passes it as the first argument to
the function on the right-hand side.

ifelse(nhanes_df$SMOKE %in% c("QuitSmoke", "StillSmoke"),
"Yes", "No") |>

table()
#>
#> No Yes
#> 1411 1173

The summary() and table() functions allow us to summarize the univariate
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sample distributions of columns. We may also want to plot these distributions.
We saw in Chapter 3 that the hist() function creates a histogram plot. We
use this function to plot a histogram of the log transformation of the lead
column.

hist(log(nhanes_df$LEAD))
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If we want to polish this figure, we can use some of the other optional argu-
ments to the hist() function. For example, we may want to update the text
log(nhanes_df$lead) in the title and x-axis. In the following code, we update
the color, labels, and number of bins for the plot. The function colors() re-
turns all recognized colors in R. The argument breaks specifies the number of
bins to use to create the histogram, col specifies the color, main specifies the
title of the plot, and xlab specifies the x-axis label (using ylab would specify
the y-axis label). Read the documentation ?hist for the full list of arguments
available.

hist(log(nhanes_df$LEAD), breaks = 30, col = "blue",
main = "Histogram of Log Blood Lead Level",
xlab = "Log Blood Lead Level")
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For categorical columns, we may want to plot the counts in each category using
a barplot. The function barplot() asks us to specify the names and heights of
the bars. To do so, we need to store the counts for each category. Again, we
update the color and labels.

smoke_counts <- table(nhanes_df$SMOKE)
barplot(height = smoke_counts, names = names(smoke_counts),

col = "violetred", xlab="Smoking Status", ylab="Frequency")
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With a barplot, we can even specify a different color for each bar. To do so,
col must be a vector of specified colors with the same length as the number
of categories.

barplot(height = smoke_counts, names = names(smoke_counts),
col = c("orange", "violetred", "blue"),
xlab = "Smoking Status", ylab = "Frequency")
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4.1.1 Practice Question
Recreate the barplot in Figure 4.1 below showing the proportion of values in
each LEAD_QUANTILE category.

# Insert your solution here:

4.2 Bivariate Distributions
We now turn our attention to relationships among multiple columns. When
we have two categorical columns, we can use the table() function to find the
counts across all combinations. For example, we look at the distribution of
smoking status levels by sex. We observe that a higher percentage of female
participants have never smoked.
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Figure 4.1: Lead Quantile Barplot.

table(nhanes_df$SMOKE, nhanes_df$SEX)
#>
#> Male Female
#> NeverSmoke 596 815
#> QuitSmoke 390 241
#> StillSmoke 324 218

To look at the sample distribution of a continuous column stratified by a
categorical column, we can call the summary() function for each subset of the
data. In the subsequent code, we look at the distribution of blood lead level
by sex and observe higher blood lead levels in male observations.

summary(nhanes_df$LEAD[nhanes_df$SEX == "Female"])
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> 0.10 0.47 0.77 0.98 1.21 8.67
summary(nhanes_df$LEAD[nhanes_df$SEX == "Male"])
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> 0.05 0.70 1.09 1.46 1.66 22.01

We can also observe this visually through a boxplot. When given one categori-
cal column and one continuous column, the plot() function creates a boxplot.
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By default, the first argument is the x-axis and the second argument is the
y-axis.

plot(nhanes_df$SEX, log(nhanes_df$LEAD), ylab = "Log Blood Lead
Level",↪

xlab = "Sex")
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Alternatively, we can use the boxplot() function, which can be passed a for-
mula. A formula is a string representation of how to group the data, where
the left-hand side is the continuous column, and the right-hand side is one
or more categorical columns to group by. In the following case, we group by
multiple columns, SEX and EVER_SMOKE, so our formula is log(LEAD) ~ SEX
+ EVER_SMOKE. The second argument to the function specifies the data. We
specify the column colors to show the link between the boxplots shown.

boxplot(log(LEAD) ~ SEX + EVER_SMOKE, data = nhanes_df,
col=c("orange", "blue", "orange", "blue"),
xlab = "Sex : Ever Smoked", ylab = "Log Blood Lead Level")
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To visualize the bivariate distributions between two continuous columns, we
can use scatter plots. To create a scatter plot, we use the plot() function again.
We use this function to show the relationship between systolic and diastolic
blood pressure.

plot(nhanes_df$SBP1, nhanes_df$DBP1, col = "blue",
xlab = "Systolic Blood Pressure",
ylab = "Diastolic Blood Pressure")
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The two measures of blood pressure look highly correlated. We can calculate
their Pearson and Spearman correlation using the cor() function. The default
method is the Pearson correlation, but we can also calculate the Kendall or
Spearman correlation by specifying the method.

cor(nhanes_df$SBP1, nhanes_df$DBP1)
#> [1] 0.417
cor(nhanes_df$SBP1, nhanes_df$DBP1, method = "spearman")
#> [1] 0.471

We may also want to add some extra information to our plot. This time,
instead of specifying the color manually, we use the column hyp, an indicator
for hypertension, to specify the color. We have to make sure this vector is
a factor for R to color by group. Additionally, we add a blue vertical and
horizontal line using the abline() function to mark cutoffs for hypertension.
Even though this function is called after plot(), the lines are automatically
added to the current plot. We can see that most of those with hypertension
have systolic or diastolic blood pressure measurements above this threshold.

plot(nhanes_df$SBP1, nhanes_df$DBP1, col = as.factor(nhanes_df$HYP),
xlab = "Systolic Blood Pressure",
ylab = "Diastolic Blood Pressure")

abline(v = 130, col = "blue")
abline(h = 80, col = "blue")

100 120 140 160 180 200 220

0
40

80
12

0

Systolic Blood Pressure

D
ia

st
ol

ic
 B

lo
od

 P
re

ss
ur

e



4.2 Bivariate Distributions 73

The previous plots are all displayed as a single figure. If we want to display
multiple plots next to each other, we can specify the graphical parameters
using the par() function by updating the argument mfrow = c(nrow, ncol)
with the number of columns and rows we would like to use for our figures. We
use this to display the distribution of log blood lead level between those with
and without hypertension next to the previous plot.

par(mfrow = c(1, 2))

# boxplot
boxplot(log(LEAD) ~ HYP, data = nhanes_df, xlab = "Hypertension",

ylab = "Log Blood Lead Level")

# scatter plot
plot(nhanes_df$SBP1, nhanes_df$DBP1, col = as.factor(nhanes_df$HYP),

xlab = "Systolic Blood Pressure",
ylab = "Diastolic Blood Pressure")

abline(v = 130, col = "blue")
abline(h = 80, col = "blue")
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We then reset to only display a single plot for future images using the par()
function again.

par(mfrow = c(1, 1))
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4.2.1 Practice Question
Recreate the three boxplots in Figure 4.2 (one for each education level) of
income by BMI category and arrange them next to each other using the par()
function.

Figure 4.2: Boxplot Example.

# Insert your solution here:

4.3 Autogenerated Plots
In the previous sections, we learned some new functions for visualizing the re-
lationship between columns. The GGally package contains some useful func-
tions for looking at multiple univariate and bivariate relationships at the same
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time, such as the ggpairs() function. The function ggpairs() takes the data
as its first argument. By default, it plots the pairwise distributions for all
columns, but we can also specify to only select a subset of columns using the
columns argument. You can see in the following example that it plots barplots
and density plots for each univariate sample distribution. It then plots the
bivariate distributions and calculates the Pearson correlation for all pairs of
continuous columns. That’s a lot of information!

ggpairs(nhanes_df, columns = c("SEX", "AGE", "LEAD", "SBP1", "DBP1"))
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Another useful function in this package is the ggcorr() function. This function
takes in a data frame with only numeric columns and displays the correlation
between all pairs of columns, where the color of each grid cell indicates the
strength of the correlation. The additional argument label=TRUE prints the
actual correlation value on each grid cell. This is a useful way to identify pairs
of strongly correlated columns. Note that we used the pipe operator again to
find the correlation on the continuous columns without saving this subset of
data.

nhanes_df[, c("AGE", "LEAD", "SBP1", "DBP1")] |>
ggcorr(label = TRUE)
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4.4 Tables
Another useful way to display information about your data is through tables.
For example, it is standard practice in articles to have the first table in the
paper give information about the study sample, such as the mean and stan-
dard deviation for all continuous columns and the proportions for categorical
columns. The gt package is designed to create polished tables that can include
footnotes, titles, column labels, etc. The gtsummary package is an extension
of this package that can create summary tables. We focus on the latter but
come back to creating nice tables in Chapter 22.

To start, we create a gt object (a special type of table) of the first six rows of
our data using the gt() function. You can see the difference in the formatting
as opposed to printing the data.

gt(head(nhanes_df[, c("ID", "AGE", "SEX", "RACE")]))

ID AGE SEX RACE
93711 56 Male Other Race
93713 67 Male Non-Hispanic White
93716 61 Male Other Race
93717 22 Male Non-Hispanic White
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93721 60 Female Mexican American
93722 60 Female Non-Hispanic White

We now show you how to use the tbl_summary() function in the gtsummary
package. The first argument to this function is again the data frame. By
default, this function summarizes all the columns in the data. Instead, we use
the include argument to specify a list of columns to include. We then pipe this
output to the function as_gt(), which creates a gt table from the summary
output. Note that the table computes the total number of observations and the
proportions for categorical columns and the median and interquartile range
for continuous columns.

tbl_summary(nhanes_df,
include = c("SEX", "RACE", "AGE", "EDUCATION", "SMOKE",

"BMI_CAT", "LEAD", "SBP1", "DBP1", "HYP")) |>
as_gt()

Characteristic N = 2,5841

SEX
    Male 1,310 (51%)
    Female 1,274 (49%)
RACE
    Mexican American 358 (14%)
    Other Hispanic 225 (8.7%)
    Non-Hispanic White 992 (38%)
    Non-Hispanic Black 568 (22%)
    Other Race 441 (17%)
AGE 48 (33, 62)
EDUCATION
    LessThanHS 373 (14%)
    HS 593 (23%)
    MoreThanHS 1,618 (63%)
SMOKE
    NeverSmoke 1,411 (55%)
    QuitSmoke 631 (24%)
    StillSmoke 542 (21%)
BMI_CAT
    BMI<=25 663 (26%)
    25<BMI<30 808 (31%)
    BMI>=30 1,113 (43%)
LEAD 0.93 (0.56, 1.44)
SBP1 122 (112, 134)
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DBP1 72 (66, 80)
HYP 1,451 (56%)

1n (%); Median (IQR)

We can update our table by changing some of its arguments. This time, we
specify that we want to stratify our table by hypertension status so that the ta-
ble summarizes the data by this grouping. Additionally, we change how contin-
uous columns are summarized by specifying that we want to report the mean
and standard deviation instead of the median and interquartile range. We do
this using the statistic argument. The documentation for the tbl_summary()
function can help you format this argument depending on which statistics you
would like to display.

tbl_summary(nhanes_df,
include = c("SEX", "RACE", "AGE", "EDUCATION", "SMOKE",

"BMI_CAT", "LEAD", "SBP1", "DBP1", "HYP"),
by = "HYP",
statistic = list(all_continuous() ~ "{mean} ({sd})")) |>

as_gt()

Characteristic 0, N = 1,1331 1, N = 1,4511

SEX
    Male 472 (42%) 838 (58%)
    Female 661 (58%) 613 (42%)
RACE
    Mexican American 186 (16%) 172 (12%)
    Other Hispanic 104 (9.2%) 121 (8.3%)
    Non-Hispanic White 429 (38%) 563 (39%)
    Non-Hispanic Black 203 (18%) 365 (25%)
    Other Race 211 (19%) 230 (16%)
AGE 40 (15) 55 (16)
EDUCATION
    LessThanHS 151 (13%) 222 (15%)
    HS 250 (22%) 343 (24%)
    MoreThanHS 732 (65%) 886 (61%)
SMOKE
    NeverSmoke 678 (60%) 733 (51%)
    QuitSmoke 220 (19%) 411 (28%)
    StillSmoke 235 (21%) 307 (21%)
BMI_CAT
    BMI<=25 392 (35%) 271 (19%)
    25<BMI<30 351 (31%) 457 (31%)
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    BMI>=30 390 (34%) 723 (50%)
LEAD 1.03 (1.15) 1.37 (1.25)
SBP1 112 (10) 134 (18)
DBP1 67 (9) 77 (14)

1n (%); Mean (SD)

Outside of the gt and gtsummary packages, another common package used
to create summary tables is the tableone package (Yoshida and Bartel 2022),
which is not covered in this book.

4.5 Exercises
For these exercises, we continue using the nhanes_df data.

1. Using both numerical and graphical summaries, describe the dis-
tribution of the first diastolic blood pressure reading DBP1 among
study participants. Then, create a column called INCOME_CAT with
two categories: “low” for those whose income is at most 2 and “not
low” otherwise, and examine the bivariate distribution of DBP1 and
INCOME_CAT. Arrange the two plots next to each other. What do you
notice?

2. Create a subset of the data containing only adults between the ages
of 20 and 55, inclusive. Then, explore how blood pressure varies by
age and gender among this age group. Is there a visible trend in
blood pressure with increasing age among either sex?

3. For males between the ages of 50 and 59, compare blood pressure
across race as reported in the race column. Then, create a sum-
mary table stratified by the race column and report the mean, stan-
dard deviation, minimum, and maximum values for all continuous
columns.

4. Recreate the plots in Figure 4.3 and Figure 4.4. Based on these
plots, what trend do you expect to see in blood lead levels over
time? Check your answer to the previous question by plotting these
two columns against each other.
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Figure 4.3: Education Levels Over Time.

Figure 4.4: Blood Lead Level by Education Level.



5
Data Transformations and Summaries

In this chapter, we introduce the dplyr package (Wickham et al. 2023), which
is part of the tidyverse group of packages, to expand our tools in exploring
and transforming our data. We learn how to do some basic manipulations of
data (e.g., adding or removing columns, filtering data, arranging by one or
multiple columns) as well as how to summarize data (e.g., grouping by values,
calculating summary statistics). We also practice combining these operations
using the pipe operator %>% from the tidyverse. We use the same sample of
the National Health and Nutrition Examination Survey (Centers for Disease
Control and Prevention (CDC) 1999-2018) as in Chapter 4.

library(HDSinRdata)
library(tidyverse)

data(NHANESsample)

5.1 Tibbles and Data Frames
Take a look at the class of NHANESsample. As we might expect, the data is
stored as a data frame.

class(NHANESsample)
#> [1] "data.frame"

However, tidyverse packages also work with another data structure called a
tibble. A tibble has all the properties of data frames that we have learned so
far, but they are a more modern version of a data frame. To convert our data
to this data structure, we use the as_tibble() function. In practice, there are
only very slight differences between the two data structures, and you generally
do not need to convert data frames to tibbles. In the following code chunks,
we convert our data from a data frame to a tibble and print the head of the
data before converting it back to a data frame and repeating. You can see the

81
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two structures have a slightly different print statement but are otherwise very
similar.

nhanes_df <- as_tibble(NHANESsample)
print(head(nhanes_df))
#> # A tibble: 6 x 21
#> ID AGE SEX RACE EDUCATION INCOME SMOKE YEAR LEAD

BMI_CAT↪

#> <dbl> <dbl> <fct> <fct> <fct> <dbl> <fct> <dbl> <dbl>
<fct>↪

#> 1 2 77 Male Non-His~ MoreThan~ 5 Neve~ 1999 5
BMI<=25↪

#> 2 5 49 Male Non-His~ MoreThan~ 5 Quit~ 1999 1.6
25<BMI~↪

#> 3 12 37 Male Non-His~ MoreThan~ 4.93 Neve~ 1999 2.4
BMI>=30↪

#> 4 13 70 Male Mexican~ LessThan~ 1.07 Quit~ 1999 1.6
25<BMI~↪

#> 5 14 81 Male Non-His~ LessThan~ 2.67 Stil~ 1999 5.5
25<BMI~↪

#> 6 15 38 Female Non-His~ MoreThan~ 4.52 Stil~ 1999 1.5
25<BMI~↪

#> # i 11 more variables: LEAD_QUANTILE <fct>, HYP <dbl>, ALC <chr>,
#> # DBP1 <dbl>, DBP2 <dbl>, DBP3 <dbl>, DBP4 <dbl>, SBP1 <dbl>,
#> # SBP2 <dbl>, SBP3 <dbl>, SBP4 <dbl>

nhanes_df <- as.data.frame(nhanes_df)
print(head(nhanes_df))
#> ID AGE SEX RACE EDUCATION INCOME SMOKE YEAR
#> 1 2 77 Male Non-Hispanic White MoreThanHS 5.00 NeverSmoke 1999
#> 2 5 49 Male Non-Hispanic White MoreThanHS 5.00 QuitSmoke 1999
#> 3 12 37 Male Non-Hispanic White MoreThanHS 4.93 NeverSmoke 1999
#> 4 13 70 Male Mexican American LessThanHS 1.07 QuitSmoke 1999
#> 5 14 81 Male Non-Hispanic White LessThanHS 2.67 StillSmoke 1999
#> 6 15 38 Female Non-Hispanic White MoreThanHS 4.52 StillSmoke 1999
#> LEAD BMI_CAT LEAD_QUANTILE HYP ALC DBP1 DBP2 DBP3 DBP4 SBP1 SBP2
#> 1 5.0 BMI<=25 Q4 0 Yes 58 56 56 NA 106 98
#> 2 1.6 25<BMI<30 Q3 1 Yes 82 84 82 NA 122 122
#> 3 2.4 BMI>=30 Q4 1 Yes 108 98 100 NA 182 172
#> 4 1.6 25<BMI<30 Q3 1 Yes 78 62 70 NA 140 130
#> 5 5.5 25<BMI<30 Q4 1 Yes 56 NA 58 64 142 NA
#> 6 1.5 25<BMI<30 Q3 0 Yes 68 68 70 NA 106 112
#> SBP3 SBP4



5.2 Subsetting Data 83

#> 1 98 NA
#> 2 122 NA
#> 3 176 NA
#> 4 130 NA
#> 5 134 138
#> 6 106 NA

We mention tibbles here since some functions in the tidyverse convert data
frames to tibbles in their output. In particular, when we later summarize over
groups we can expect a tibble to be returned. It is useful to be aware that our
data may change data structure with such functions and to know that we can
always convert back if needed.

5.2 Subsetting Data
In earlier chapters, we have seen how to select and filter data using row and
column indices as well as using the subset() function. The dplyr package has
its own functions that are useful for subsetting data. The select() function
allows us to select a subset of columns: this function takes in the data frame
(or tibble) and the names or indices of the columns we want to select. For
example, if we only wanted to select the variables for race and blood lead level,
we could specify these two columns. To display the result of this selection, we
use the pipe operator %>% from the magittr package of the tidyverse. Similar
to the pipe operator |> in base R, the pipe operator %>% takes the result on
the left-hand side and passes it as the first argument to the function on the
right-hand side. The following output shows that there are only two columns
in the filtered data.

select(nhanes_df, c(RACE, LEAD)) %>% head()
#> RACE LEAD
#> 1 Non-Hispanic White 5.0
#> 2 Non-Hispanic White 1.6
#> 3 Non-Hispanic White 2.4
#> 4 Mexican American 1.6
#> 5 Non-Hispanic White 5.5
#> 6 Non-Hispanic White 1.5

The select() function can also be used to remove columns by adding a nega-
tive sign in front of the vector of column names in its arguments. For example,
we keep all columns except ID and LEAD_QUANTILE. Note that in this case we
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have saved the selected data back to our data frame nhanes_df. Additionally,
this time we used a pipe operator to pipe the data to the select function itself.

nhanes_df <- nhanes_df %>% select(-c(ID, LEAD_QUANTILE))
names(nhanes_df)
#> [1] "AGE" "SEX" "RACE" "EDUCATION" "INCOME"
#> [6] "SMOKE" "YEAR" "LEAD" "BMI_CAT" "HYP"
#> [11] "ALC" "DBP1" "DBP2" "DBP3" "DBP4"
#> [16] "SBP1" "SBP2" "SBP3" "SBP4"

While select() allows us to choose a subset of columns, the filter() function
allows us to choose a subset of rows. The filter() function takes a data frame
as the first argument and a vector of Booleans as the second argument. This
vector of Booleans can be generated using conditional statements as we used
in Chapter 4. We choose to filter the data to only observations after 2008.

nhanes_df_recent <- nhanes_df %>% filter(YEAR >= 2008)

We can combine conditions by using multiple filter() calls, by creating a
more complicated conditional statement using the & (and), | (or), and %in%
(in) operators, or by separating the conditions with commas within filter. In
the following code, we demonstrate these three ways to filter the data to males
between 2008 and 2012. Note that the between() function allows us to capture
the logic YEAR >= 2008 & YEAR <= 2012.

# Example 1: multiple filter calls
nhanes_df_males1 <- nhanes_df %>%
filter(YEAR <= 2012) %>%
filter(YEAR >= 2008) %>%
filter(SEX == "Male")

# Example 2: combine with & operator
nhanes_df_males2 <- nhanes_df %>%
filter((YEAR <= 2012) & (YEAR >= 2008) & (SEX == "Male"))

# Example 3: combine into one filter call with commas
nhanes_df_males3 <- nhanes_df %>%
filter(between(YEAR, 2008, 2012), SEX == "Male")

The use of parentheses in the previous code is especially important in order
to capture our desired logic. In all these examples, we broke our code up into
multiple lines, which makes it easier to read. A good rule of thumb is to not go
past 80 characters in a line, and R Studio conveniently has a vertical gray line
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at this limit. To create a new line, you can hit enter either after an operator
(e.g., %>%, +, |) or within a set of unfinished brackets or parentheses. Either of
these breaks lets R know that your code is not finished yet.

Lastly, we can subset the data using the slice() function to select a slice of
rows by their index. The function takes in the dataset and a vector of indices.
In the following example, we find the first and last rows of the data.

slice(nhanes_df, c(1, nrow(nhanes_df)))
#> AGE SEX RACE EDUCATION INCOME SMOKE YEAR LEAD
#> 1 77 Male Non-Hispanic White MoreThanHS 5.00 NeverSmoke 1999 5.0
#> 2 38 Male Non-Hispanic White MoreThanHS 1.56 StillSmoke 2017 0.9
#> BMI_CAT HYP ALC DBP1 DBP2 DBP3 DBP4 SBP1 SBP2 SBP3 SBP4
#> 1 BMI<=25 0 Yes 58 56 56 NA 106 98 98 NA
#> 2 BMI>=30 1 Yes 98 92 98 NA 150 146 148 NA

A few other useful slice functions are slice_sample(), slice_max(), and
slice_min(). The first takes in an argument n which specifies the number
of random rows to sample from the data. For example, we could randomly
sample 100 rows from our data. The latter two allow us to specify a column
through the argument order_by and return the n rows with either the highest
or lowest values in that column. For example, we can find the three male ob-
servations from 2007 with the highest and lowest blood lead levels and select
a subset of columns to display.

# three male observations with highest blood lead level in 2007
nhanes_df %>%
filter(YEAR == 2007, SEX == "Male") %>%
select(c(RACE, EDUCATION, SMOKE, LEAD, SBP1, DBP1)) %>%
slice_max(order_by = LEAD, n = 3)

#> RACE EDUCATION SMOKE LEAD SBP1 DBP1
#> 1 Non-Hispanic Black LessThanHS NeverSmoke 33.1 106 66
#> 2 Other Hispanic LessThanHS StillSmoke 26.8 106 72
#> 3 Other Hispanic LessThanHS StillSmoke 25.7 112 60

# three male observations with lowest blood lead level in 2007
nhanes_df %>%
filter(YEAR == 2007, SEX == "Male") %>%
select(c(RACE, EDUCATION, SMOKE, LEAD, SBP1, DBP1)) %>%
slice_min(order_by = LEAD, n = 3)

#> RACE EDUCATION SMOKE LEAD SBP1 DBP1
#> 1 Non-Hispanic White LessThanHS NeverSmoke 0.177 114 80
#> 2 Other Hispanic LessThanHS QuitSmoke 0.280 122 62
#> 3 Mexican American MoreThanHS QuitSmoke 0.320 112 66
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5.2.1 Practice Question
Filter the data to only those with an education level of more than HS who
report alcohol use. Then, select only the diastolic blood pressure variables
and display the fourth and tenth rows. Your result should match the result in
Figure 5.1.

Figure 5.1: Filtering and Selecting Data.

# Insert your solution here:

5.3 Updating Rows and Columns
The next few functions we look at allow us to update the rows and columns in
our data. For example, the rename() function allows us to change the names
of columns. In the following code, we change the name of INCOME to PIR since
this variable is the poverty income ratio and also update the name of SMOKE to
be SMOKE_STATUS. When specifying these names, the new name is on the left
of the = and the old name is on the right.

nhanes_df <- nhanes_df %>% rename(PIR = INCOME, SMOKE_STATUS = SMOKE)
names(nhanes_df)
#> [1] "AGE" "SEX" "RACE" "EDUCATION"
#> [5] "PIR" "SMOKE_STATUS" "YEAR" "LEAD"
#> [9] "BMI_CAT" "HYP" "ALC" "DBP1"
#> [13] "DBP2" "DBP3" "DBP4" "SBP1"
#> [17] "SBP2" "SBP3" "SBP4"

In the last chapter, we created a new variable called EVER_SMOKE based on the
smoking status variable using the ifelse() function. Recall that this function
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allows us to specify a condition, and then two alternative values based on
whether we meet or do not meet this condition. We see that there are about
15,000 subjects in our data who never smoked.

ifelse(nhanes_df$SMOKE_STATUS == "NeverSmoke", "No", "Yes") %>%
table()

#> .
#> No Yes
#> 15087 16178

Another useful function from the tidyverse is the case_when() function, which
is an extension of the ifelse() function but allows to specify more than two
cases. We demonstrate this function to show how we could relabel the levels
of the SMOKE_STATUS column. For each condition, we use the right side of the
~ to specify the value to be assigned when that condition is TRUE.

case_when(nhanes_df$SMOKE_STATUS == "NeverSmoke" ~ "Never Smoked",
nhanes_df$SMOKE_STATUS == "QuitSmoke" ~ "Quit Smoking",
nhanes_df$SMOKE_STATUS ==

"StillSmoke" ~ "Current Smoker") %>%
table()

#> .
#> Current Smoker Never Smoked Quit Smoking
#> 7317 15087 8861

In the previous example, we did not store the columns we created. To do so, we
could use the $ operator or the cbind() function. The tidyverse also includes
an alternative function to add columns called mutate(). This function takes
in a data frame and a set of columns with associated names to add to the
data or update. In the subsequent example, we create the column EVER_SMOKE
and update the column SMOKE_STATUS. Within the mutate() function, we do
not have to use the $ operator to reference the column SMOKE_STATUS. Instead,
we can specify just the column name, and the function interprets it as that
column.

nhanes_df <- nhanes_df %>%
mutate(EVER_SMOKE = ifelse(SMOKE_STATUS == "NeverSmoke",

"No", "Yes"),
SMOKE_STATUS =
case_when(SMOKE_STATUS == "NeverSmoke" ~ "Never Smoked",

SMOKE_STATUS == "QuitSmoke" ~ "Quit Smoking",
SMOKE_STATUS == "StillSmoke" ~ "Current Smoker"))
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The last function we demonstrate in this section is the arrange() function,
which takes in a data frame and a vector of columns used to sort the data
(data is sorted by the first column with ties sorted by the second column, etc.).
By default, the arrange() function sorts the data in increasing order, but we
can use the desc() function to instead sort in descending order. For example,
the following code filters the data to male smokers before sorting by decreasing
systolic and diastolic blood pressure in descending order. That is, the value of
DBP1 is used to sort rows that have the same systolic blood pressure values.

nhanes_df %>%
select(c(YEAR, SEX, SMOKE_STATUS, SBP1, DBP1, LEAD)) %>%
filter(SEX == "Male", SMOKE_STATUS == "Current Smoker") %>%
arrange(desc(SBP1), desc(DBP1)) %>%
head(8)

#> YEAR SEX SMOKE_STATUS SBP1 DBP1 LEAD
#> 1 2011 Male Current Smoker 230 120 5.84
#> 2 2015 Male Current Smoker 230 98 1.56
#> 3 2009 Male Current Smoker 220 80 4.84
#> 4 2001 Male Current Smoker 218 118 3.70
#> 5 2017 Male Current Smoker 212 122 2.20
#> 6 2003 Male Current Smoker 212 54 4.00
#> 7 2011 Male Current Smoker 210 92 5.37
#> 8 2007 Male Current Smoker 210 80 2.18

If instead we had only sorted by SBP1, then the rows with the same value for
systolic blood pressure would appear in their original order. You can see the
difference in the following output.

nhanes_df %>%
select(c(YEAR, SEX, SMOKE_STATUS, SBP1, DBP1, LEAD)) %>%
filter(SEX == "Male", SMOKE_STATUS == "Current Smoker") %>%
arrange(desc(SBP1)) %>%
head(8)

#> YEAR SEX SMOKE_STATUS SBP1 DBP1 LEAD
#> 1 2011 Male Current Smoker 230 120 5.84
#> 2 2015 Male Current Smoker 230 98 1.56
#> 3 2009 Male Current Smoker 220 80 4.84
#> 4 2001 Male Current Smoker 218 118 3.70
#> 5 2003 Male Current Smoker 212 54 4.00
#> 6 2017 Male Current Smoker 212 122 2.20
#> 7 2007 Male Current Smoker 210 80 2.18
#> 8 2011 Male Current Smoker 210 92 5.37
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5.3.1 Practice Question
Create a new column called DBP_CHANGE that is equal to the difference between
a patient’s first and fourth diastolic blood pressure readings. Then, sort the
data frame by this new column in increasing order and print the first four
rows. The first four DBP_CHANGE values in the head of the resulting data frame
should be −66, −64, −64, and −62.

# Insert your solution here:

5.4 Summarizing and Grouping
If we want to understand how many observations there are for each given race
category, we could use the table() function as we described in earlier chapters.
Another similar function is the count() function. This function takes in a
data frame and one or more columns and counts the number of rows for each
combination of unique values in these columns. If no columns are specified, it
counts the total number of rows in the data frame. In the following code, we
find the total number of rows (31,265) and the number of observations by race
and year. We can see that the number in each group fluctuates quite a bit!

count(nhanes_df)
#> n
#> 1 31265
count(nhanes_df, RACE, YEAR)
#> RACE YEAR n
#> 1 Mexican American 1999 713
#> 2 Mexican American 2001 674
#> 3 Mexican American 2003 627
#> 4 Mexican American 2005 634
#> 5 Mexican American 2007 639
#> 6 Mexican American 2009 672
#> 7 Mexican American 2011 322
#> 8 Mexican American 2013 234
#> 9 Mexican American 2015 287
#> 10 Mexican American 2017 475
#> 11 Other Hispanic 1999 181
#> 12 Other Hispanic 2001 129
#> 13 Other Hispanic 2003 80
#> 14 Other Hispanic 2005 96
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#> 15 Other Hispanic 2007 395
#> 16 Other Hispanic 2009 367
#> 17 Other Hispanic 2011 337
#> 18 Other Hispanic 2013 167
#> 19 Other Hispanic 2015 214
#> 20 Other Hispanic 2017 313
#> 21 Non-Hispanic White 1999 1401
#> 22 Non-Hispanic White 2001 1882
#> 23 Non-Hispanic White 2003 1785
#> 24 Non-Hispanic White 2005 1818
#> 25 Non-Hispanic White 2007 1940
#> 26 Non-Hispanic White 2009 2169
#> 27 Non-Hispanic White 2011 1463
#> 28 Non-Hispanic White 2013 917
#> 29 Non-Hispanic White 2015 685
#> 30 Non-Hispanic White 2017 1413
#> 31 Non-Hispanic Black 1999 463
#> 32 Non-Hispanic Black 2001 542
#> 33 Non-Hispanic Black 2003 576
#> 34 Non-Hispanic Black 2005 679
#> 35 Non-Hispanic Black 2007 728
#> 36 Non-Hispanic Black 2009 661
#> 37 Non-Hispanic Black 2011 876
#> 38 Non-Hispanic Black 2013 357
#> 39 Non-Hispanic Black 2015 351
#> 40 Non-Hispanic Black 2017 808
#> 41 Other Race 1999 76
#> 42 Other Race 2001 88
#> 43 Other Race 2003 109
#> 44 Other Race 2005 122
#> 45 Other Race 2007 123
#> 46 Other Race 2009 175
#> 47 Other Race 2011 475
#> 48 Other Race 2013 223
#> 49 Other Race 2015 209
#> 50 Other Race 2017 595

Finding the counts like we did previously is a form of a summary statistic
for our data. The summarize() function in the tidyverse is used to compute
summary statistics of the data and allows us to compute multiple statistics:
this function takes in a data frame and one or more summary functions based
on the given column names. In the subsequent example, we find the total
number of observations as well as the mean and median systolic blood pressure
for Non-Hispanic Blacks. Note that the n() function is the function within
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summarize() that finds the number of observations. In the mean() and median()
functions we set na.rm=TRUE to remove NAs before computing these values
(otherwise, we could get NA as our output).

nhanes_df %>%
filter(RACE == "Non-Hispanic Black") %>%
summarize(TOT = n(), MEAN_SBP = mean(SBP1, na.rm=TRUE),

MEAN_DBP = mean(DBP1, na.rm=TRUE))
#> TOT MEAN_SBP MEAN_DBP
#> 1 6041 129 72.6

If we wanted to repeat this for the other race groups, we would have to change
the arguments to the filter() function each time. To avoid having to repeat
our code and/or do this multiple times, we can use the group_by() function,
which takes a data frame and one or more columns with which to group the
data. In the following code, we group using the RACE variable. When we look
at printed output, it looks almost the same as it did before except that we can
see that its class is now a grouped data frame, which is printed at the top. In
fact, a grouped data frame (or grouped tibble) acts like a set of data frames:
one for each group. If we use the slice() function with index 1, it returns the
first row for each group.

nhanes_df %>%
group_by(RACE) %>%
slice(1)

#> # A tibble: 5 x 20
#> # Groups: RACE [5]
#> AGE SEX RACE EDUCATION PIR SMOKE_STATUS YEAR LEAD

BMI_CAT↪

#> <dbl> <fct> <fct> <fct> <dbl> <chr> <dbl> <dbl>
<fct>↪

#> 1 70 Male Mexican~ LessThan~ 1.07 Quit Smoking 1999 1.6
25<BMI~↪

#> 2 61 Female Other H~ MoreThan~ 3.33 Current Smo~ 1999 2.2
BMI<=25↪

#> 3 77 Male Non-His~ MoreThan~ 5 Never Smoked 1999 5
BMI<=25↪

#> 4 38 Female Non-His~ HS 0.92 Current Smo~ 1999 1.8
25<BMI~↪

#> 5 63 Female Other R~ MoreThan~ 5 Never Smoked 1999 1.2
BMI<=25↪

#> # i 11 more variables: HYP <dbl>, ALC <chr>, DBP1 <dbl>, DBP2 <dbl>,
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#> # DBP3 <dbl>, DBP4 <dbl>, SBP1 <dbl>, SBP2 <dbl>, SBP3 <dbl>,
#> # SBP4 <dbl>, EVER_SMOKE <chr>

Grouping data is very helpful in combination with the summarize() function.
Like with the slice() function, summarize() calculates the summary values
for each group. We can now find the total number of observations as well as
the mean systolic and diastolic blood pressure values for each racial group.
Note that the returned summarized data is in a tibble.

nhanes_df %>%
group_by(RACE) %>%
summarize(TOT = n(), MEAN_SBP = mean(SBP1, na.rm=TRUE),

MEAN_DBP = mean(DBP1, na.rm=TRUE))
#> # A tibble: 5 x 4
#> RACE TOT MEAN_SBP MEAN_DBP
#> <fct> <int> <dbl> <dbl>
#> 1 Mexican American 5277 124. 70.4
#> 2 Other Hispanic 2279 123. 70.1
#> 3 Non-Hispanic White 15473 125. 70.4
#> 4 Non-Hispanic Black 6041 129. 72.6
#> 5 Other Race 2195 122. 72.6

After summarizing, the data is no longer grouped by race. If we ever want to
remove the group structure from our data, we can use the ungroup() function,
which restores the data to a single data frame. After ungrouping by race, we
can see that we get a single observation returned by the slice() function.

nhanes_df %>%
select(SEX, RACE, SBP1, DBP1) %>%
group_by(RACE) %>%
ungroup() %>%
arrange(desc(SBP1)) %>%
slice(1)

#> # A tibble: 1 x 4
#> SEX RACE SBP1 DBP1
#> <fct> <fct> <dbl> <dbl>
#> 1 Female Non-Hispanic White 270 124

5.4.1 Practice Question
Create a data frame summarizing the percent of patients with hypertension
by smoking status. The result should look like Figure 5.2.
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Figure 5.2: Grouping and Summarizing Data.

# Insert your solution here:

5.5 Exercises
The following exercises use the covidcases dataset from the HDSinRdata
package. Before completing the exercises, be sure to read the documentation
for this data (?covidcases).

data(covidcases)

1. Suppose we are interested in the distribution of weekly cases by
state. First, create a new column in covidcases called region spec-
ifying whether each state is in the Northeast, Midwest, South, or
West (you can either do this by hand using this list1 of which states
are in which region, or you can use state.region from the datasets
package in R). Then, create a data frame summarizing the average
and standard deviation of the weekly cases for the Northeast.

2. Now, create a data frame with the average and standard deviation
summarized for each region rather than for just one selected region
as in Question 1. Sort this data frame from highest to lowest average
weekly cases. What other information would you need in order to

1https://en.wikipedia.org/wiki/List_of_regions_of_the_United_States

https://en.wikipedia.org/wiki/List_of_regions_of_the_United_States
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more accurately compare these regions in terms of their average
cases?

3. Find the ten counties in the Midwest with the lowest weekly deaths
in week 15 of this data ignoring ties (use slice_min() to find the
argument needed for this). What do you notice about the minimum
values? See the data documentation for why we observe these values.

4. Filter the data to include weeks 9 and 20 (around the start of the
pandemic), get the total cases per county during that time frame,
and then find the county in each state that had the highest number
of total cases.



6
Case Study: Cleaning Tuberculosis Screening
Data

In this chapter, we put some of our R skills together in a case study.
This case study focuses on data cleaning and pre-processing. We use the
tb_diagnosis_raw data from the HDSinRdata package. This data contains
information on 1,634 patients in rural South Africa who presented at a health
clinic with tuberculosis-related symptoms and were tested for tuberculosis
(TB) using Xpert MTB/RIF. Our goal is to clean this data to reflect the pre-
processing described in Baik et al. (2020). This paper uses this data to derive
a simple risk score model for screening patients for treatment while awaiting
Xpert results. We use the tidyverse packages as well as the summary tables
from gtsummary.

library(HDSinRdata)
library(tidyverse)
library(gt)
library(gtsummary)

To begin, read in the data and review the description of the original columns.
Some things to note in the data documentation are the ways unknown, missing,
or refused values are coded as well as how some of the columns are related to
each other.

# Read in data
data("tb_diagnosis_raw")

# Inspect variable descriptions
# ?tb_diagnosis_raw

To start, we select variables needed for our analysis. In particular, we drop
columns related to the participation in the survey and about seeking care.
Since some of these variables contain long or vague names, we also rename
most of the variables.

95
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# Select variables and rename
tb_df <- tb_diagnosis_raw %>%
select(c(xpert_status_fac, age_group, sex, hiv_status_fac,

other_conditions_fac___1, other_conditions_fac___3,
other_conditions_fac___88, other_conditions_fac___99,
symp_fac___1, symp_fac___2, symp_fac___3, symp_fac___4,
symp_fac___99, length_symp_unit_fac, length_symp_days_fac,
length_symp_wk_fac, length_symp_mnt_fac, length_symp_yr_fac,
smk_fac, dx_tb_past_fac, educ_fac)) %>%

rename(tb = xpert_status_fac, hiv_pos = hiv_status_fac,
cough = symp_fac___1, fever = symp_fac___2,
weight_loss = symp_fac___3, night_sweats = symp_fac___4,
symptoms_missing = symp_fac___99,
ever_smoke = smk_fac,
past_tb = dx_tb_past_fac, education = educ_fac)

We then use a summary table to understand the initial distributions of the
variables observed. This also highlights where we have missing or unknown
data.

tbl_summary(tb_df) %>%
as_gt()

Characteristic N = 1,6341

tb
    1 765 (47%)
    2 869 (53%)
age_group
    [15,25) 240 (15%)
    [25,35) 333 (20%)
    [35,45) 385 (24%)
    [45,55) 343 (21%)
    [55,99) 333 (20%)
sex
    1 830 (51%)
    2 804 (49%)
hiv_pos
    1 632 (39%)
    2 815 (50%)
    77 139 (8.5%)
    88 48 (2.9%)
other_conditions_fac___1 895 (55%)
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other_conditions_fac___3 52 (3.2%)
other_conditions_fac___88 11 (0.7%)
other_conditions_fac___99 30 (1.8%)
cough 1,279 (78%)
fever 479 (29%)
weight_loss 534 (33%)
night_sweats 579 (35%)
symptoms_missing 22 (1.3%)
length_symp_unit_fac
    1 207 (14%)
    2 603 (39%)
    3 538 (35%)
    4 83 (5.4%)
    77 98 (6.4%)
    Unknown 105
length_symp_days_fac 3 (3, 4)
    Unknown 1,427
length_symp_wk_fac
    1 183 (30%)
    2 237 (39%)
    3 147 (24%)
    4 15 (2.5%)
    5 5 (0.8%)
    6 13 (2.2%)
    7 3 (0.5%)
    Unknown 1,031
length_symp_mnt_fac 2 (1, 3)
    Unknown 1,096
length_symp_yr_fac 2 (1, 4)
    Unknown 1,551
ever_smoke
    1 294 (18%)
    2 252 (15%)
    3 1,072 (66%)
    99 16 (1.0%)
past_tb
    1 255 (16%)
    2 1,354 (83%)
    77 25 (1.5%)
education 10 (7, 12)

1n (%); Median (IQR)

One observation from the table is that the coding of variables is inconsistent,
with some using 0/1 and others using 1/2. We want to standardize how these
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variables are represented. To start, we update our tb column. Additionally,
we create a column male from the previous column sex to make the reference
level clear. We can then drop the sex column.

# Re-code binary variables to 0/1 instead of 1/2
tb_df$tb <- case_when(tb_df$tb == 1 ~ "TB Positive",

tb_df$tb == 2 ~ "TB Negative")

tb_df$male <- case_when(tb_df$sex == 1 ~ 1,
tb_df$sex == 2 ~ 0)

tb_df <- tb_df %>% select(-c(sex))

Diabetes is another variable that should be coded this way. In the raw
data, several columns correspond to this question about other medical condi-
tions. Therefore, we need to use the columns other_conditions_fac___88 and
other_conditions_fac___99 to check whether the participant did not answer
the question when interpreting the 0/1 value for diabetes.

# Re-code diabetes to check if missing
tb_df$diabetes <- case_when(tb_df$other_conditions_fac___3 == 1 ~ 1,

tb_df$other_conditions_fac___1 == 1 ~ 0,
tb_df$other_conditions_fac___88 == 1 ~ NA,
tb_df$other_conditions_fac___99 == 1 ~ NA,
TRUE ~ 0)

tb_df <- tb_df %>% select(-c(other_conditions_fac___1,
other_conditions_fac___3,
other_conditions_fac___88,
other_conditions_fac___99))

table(tb_df$diabetes)
#>
#> 0 1
#> 1541 52

Next, we similarly code our variables about HIV status, smoking, and whether
the patient has ever been diagnosed with tuberculosis before. For these vari-
ables, if the patient answered that they did not know their HIV status or if
they had tested positive for TB, we code these as 0 to be consistent with the
paper.

# Re-code variables with missing or refused values
tb_df$hiv_pos <- case_when((tb_df$hiv_pos == 1) ~ 1,

tb_df$hiv_pos %in% c(2,77) ~ 0,
tb_df$hiv_pos == 88 ~ NA)
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tb_df$ever_smoke <- case_when(tb_df$ever_smoke %in% c(1,2) ~ 1,
tb_df$ever_smoke == 3 ~ 0,
tb_df$ever_smoke == 99 ~ NA)

tb_df$past_tb <- case_when(tb_df$past_tb == 1 ~ 1,
tb_df$past_tb %in% c(2,77) ~ 0)

The next variable we clean is education. First, we need to code NA values
correctly. We can then observe the distribution of years of education.

# Code NA values and look at education distribution
tb_df$education[tb_df$education == 99] <- NA
hist(tb_df$education, xlab = "Years of Education",

main = "Histogram of Education Years")

Histogram of Education Years
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For our purposes, we want to represent education as whether a person has a
high school education or less.

# Categorize education to HS and above
tb_df$hs_less <- case_when(tb_df$education <= 12 ~ 1,

tb_df$education > 12 ~ 0,
TRUE ~ NA)

tb_df <- tb_df %>% select(-c(education))
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There are several variables in the data related to how long a person has ex-
perienced symptoms. In the following code, we can see that the unit of the
symptoms, recorded in length_symp_unit_fac, determines which other column
is entered. For example, if length_symp_unit_fac == 1, then the only column
without an NA value is length_symp_days_fc.

tb_df %>%
group_by(length_symp_unit_fac) %>%
summarize(missing_days = sum(is.na(length_symp_days_fac))/n(),

missing_wks = sum(is.na(length_symp_wk_fac))/n(),
missing_mnt = sum(is.na(length_symp_mnt_fac))/n(),
missing_yr = sum(is.na(length_symp_yr_fac))/n())

#> # A tibble: 6 x 5
#> length_symp_unit_fac missing_days missing_wks missing_mnt

missing_yr↪

#> <int> <dbl> <dbl> <dbl> <dbl>
#> 1 1 0 1 1 1
#> 2 2 1 0 1 1
#> 3 3 1 1 0 1
#> 4 4 1 1 1 0
#> 5 77 1 1 1 1
#> 6 NA 1 1 1 1

Additionally, these measurements are positive integer values.

min(tb_df$length_symp_days_fac, na.rm = TRUE)
#> [1] 1
is.integer(tb_df$length_symp_days_fac)
#> [1] TRUE

This allows us to create a new variable that represents whether or not someone
has had symptoms for more than two weeks. In our case_when() function call,
we first check whether the duration is missing before checking for the cases
when symptoms would be less than two weeks.

# Categorize number of weeks experiencing symptoms
tb_df <- tb_df %>%
mutate(two_weeks = case_when((length_symp_unit_fac == 77 |

is.na(length_symp_unit_fac)) ~ NA,
(length_symp_unit_fac == 1 &

length_symp_days_fac <= 14) ~ 0,
(length_symp_unit_fac == 2 &

length_symp_wk_fac <= 2) ~ 0,
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TRUE ~ 1))

tb_df <- tb_df %>%
select(-c(length_symp_wk_fac, length_symp_days_fac,

length_symp_mnt_fac, length_symp_yr_fac,
length_symp_unit_fac))

Last, we update our symptom variables to have a summary column
num_symptoms that represents the total number of classic TB symptoms rather
than keeping track of individual symptoms. We also exclude anyone who does
not have any TB symptoms.

# Count total number of symptoms
tb_df$num_symptoms <- tb_df$fever + tb_df$weight_loss + tb_df$cough +
tb_df$night_sweats

tb_df$num_symptoms[tb_df$symptoms_missing == 1] <- NA
tb_df <- tb_df %>% select(-c(night_sweats, weight_loss, cough, fever,

symptoms_missing))

# Exclude observations with no TB symptoms
tb_df <- tb_df %>%
filter(num_symptoms != 0)

table(tb_df$num_symptoms)
#>
#> 1 2 3 4
#> 600 344 265 196

Last, we convert all variables to factors.

# Convert all variables to factors
tb_df[] <- lapply(tb_df, function(x){return(as.factor(x))})

Our final data is summarized in the following table. The add_overall() func-
tion includes the overall summary statistics in addition to our stratified sum-
maries. Our summary table looks similar to the one in the paper. However, it
looks like we have a few more observations included. Additionally, our educa-
tion variable shows a lower percentage of observations with post-high school
education and positive HIV status.
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tbl_summary(tb_df, by = "tb",
label = list(
tb= "Tuberculosis",
age_group = "Age Group",
hiv_pos = "HIV Positive",
ever_smoke = "Ever Smoked",
past_tb = "Past TB",
male = "Male",
hs_less = "High School or Less Educ.",
two_weeks = "Two Weeks Symptoms",
diabetes = "Diabetes",
num_symptoms = "Number of Symptoms"

)) %>%
add_overall() %>%
as_gt() %>%
cols_width(everything() ~ "55pt")

CharacteristicOverall, N
= 1,4051

TB
Negative,
N = 7041

TB
Positive, N

= 7011

Age Group
    [15,25) 205 (15%) 121 (17%) 84 (12%)
    [25,35) 286 (20%) 120 (17%) 166 (24%)
    [35,45) 338 (24%) 136 (19%) 202 (29%)
    [45,55) 305 (22%) 158 (22%) 147 (21%)
    [55,99) 271 (19%) 169 (24%) 102 (15%)
HIV
Positive
    0 808 (59%) 503 (73%) 305 (45%)
    1 556 (41%) 186 (27%) 370 (55%)
    Unknown 41 15 26
Ever
Smoked
    0 899 (64%) 483 (69%) 416 (60%)
    1 496 (36%) 213 (31%) 283 (40%)
    Unknown 10 8 2
Past TB
    0 1,186 (84%) 613 (87%) 573 (82%)
    1 219 (16%) 91 (13%) 128 (18%)
Male
    0 669 (48%) 394 (56%) 275 (39%)
    1 736 (52%) 310 (44%) 426 (61%)
Diabetes
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    0 1,326 (97%) 658 (97%) 668 (96%)
    1 47 (3.4%) 22 (3.2%) 25 (3.6%)
    Unknown 32 24 8
High School
or Less
Educ.
    0 119 (8.5%) 73 (10%) 46 (6.6%)
    1 1,276 (91%) 625 (90%) 651 (93%)
    Unknown 10 6 4
Two Weeks
Symptoms
    0 592 (44%) 386 (57%) 206 (31%)
    1 760 (56%) 294 (43%) 466 (69%)
    Unknown 53 24 29
Number of
Symptoms
    1 600 (43%) 426 (61%) 174 (25%)
    2 344 (24%) 181 (26%) 163 (23%)
    3 265 (19%) 67 (9.5%) 198 (28%)
    4 196 (14%) 30 (4.3%) 166 (24%)

1n (%)





7
Merging and Reshaping Data

In this chapter, we continue to look at some of the ways to manipulate data
using the tidyr and dplyr packages, which are part of the tidyverse group
of packages. In particular, we look at reshaping and merging data frames in
order to get the data in the format we want. When reshaping data, we can
convert between wide form (more columns, fewer rows) and long form (fewer
columns, more rows). We can also use data pivots to put our data into what is
called tidy form. Additionally, we look at combining information from multiple
data frames into a single data frame. The key ideas when merging data are to
think about what the common information is between the data frames and to
consider which values we want to keep.

For this chapter, we use three datasets. The first dataset is covidcases, which
contains the weekly COVID-19 case and death counts by county in the United
States for 2020 (Guidotti and Ardia 2020; Guidotti 2022); the second dataset
is mobility, which contains daily mobility estimates by state in 2020 (Warren
and Skillman 2020); and the third dataset is lockdowndates, which contains
the start and end dates for statewide stay-at-home orders (Raifman et al.
2022). Take a look at the first few rows of each data frame and read the
documentation for the column descriptions.

library(tidyverse)
library(HDSinRdata)

data(covidcases)
data(lockdowndates)
data(mobility)

head(covidcases)
#> # A tibble: 6 x 5
#> state county week weekly_cases weekly_deaths
#> <chr> <chr> <dbl> <int> <int>
#> 1 California Marin 9 1 0
#> 2 California Orange 9 3 0
#> 3 Florida Manatee 9 1 0
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#> 4 California Napa 9 1 0
#> 5 New Hampshire Grafton 9 2 0
#> 6 Washington Spokane 9 4 0

head(mobility)
#> # A tibble: 6 x 5
#> # Groups: state [1]
#> state date samples m50 m50_index
#> <chr> <chr> <int> <dbl> <dbl>
#> 1 Alabama 2020-03-01 267652 10.9 76.9
#> 2 Alabama 2020-03-02 287264 14.3 98.6
#> 3 Alabama 2020-03-03 292018 14.2 98.2
#> 4 Alabama 2020-03-04 298704 13.1 89.7
#> 5 Alabama 2020-03-05 288218 14.8 102.
#> 6 Alabama 2020-03-06 282982 17.9 126.

head(lockdowndates)
#> # A tibble: 6 x 3
#> State Lockdown_Start Lockdown_End
#> <chr> <chr> <chr>
#> 1 Alabama 2020-04-04 2020-04-30
#> 2 Alaska 2020-03-28 2020-04-24
#> 3 Arizona 2020-03-31 2020-05-16
#> 4 Arkansas None None
#> 5 California 2020-03-19 2021-01-25
#> 6 Colorado 2020-03-26 2020-04-27

Both the mobility and lockdown data frames contain date columns. Right now,
these columns in both datasets are of the class character, which we can see in
the printed output. We can use the as.Date() function to tell R to treat these
columns as dates instead of characters. When using this function, we need to
specify the date format as an argument so that R knows how to parse this text
to a date. Our format is given as %Y-%M-%D, where the %Y stands for the full
four-digit year, %M is a two-digit month (e.g., January is coded “01” vs. “1”),
and %D stands for the two-digit day (e.g., the third day is coded “03” vs. “3”).
In the following code, we convert the classes of these columns to dates.

mobility$date <- as.Date(mobility$date, formula = "%Y-%M-%D")
lockdowndates$Lockdown_Start <- as.Date(lockdowndates$Lockdown_Start,

formula = "%Y-%M-%D")
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lockdowndates$Lockdown_End <- as.Date(lockdowndates$Lockdown_End,
formula = "%Y-%M-%D")

class(mobility$date)
#> [1] "Date"
class(lockdowndates$Lockdown_Start)
#> [1] "Date"
class(lockdowndates$Lockdown_End)
#> [1] "Date"

After coding these columns as dates, we can access information such as the
day, month, year, or week from them. These functions are all available in
the lubridate package (Spinu, Grolemund, and Wickham 2023), which is a
package in the tidyverse that allows us to manipulate dates.

month(mobility$date[1])
#> [1] 3
week(mobility$date[1])
#> [1] 9

Next, we add a date column to covidcases. In this case, we need to use the
week number to find the date. Luckily, we can add days, months, weeks, or
years to dates using the lubridate package. January 1, 2020 was a Wednesday
and is counted as the first week; so to find the corresponding Sunday for each
week, we add the recorded week number minus 1 to December 29, 2019 (the
last Sunday before 2020). We show a simple example of adding one week to
this date before doing this conversion for the entire column.

as.Date("2019-12-29") + weeks(1)
#> [1] "2020-01-05"

covidcases$date <- as.Date("2019-12-29") + weeks(covidcases$week - 1)
head(covidcases)
#> # A tibble: 6 x 6
#> state county week weekly_cases weekly_deaths date
#> <chr> <chr> <dbl> <int> <int> <date>
#> 1 California Marin 9 1 0 2020-02-23
#> 2 California Orange 9 3 0 2020-02-23
#> 3 Florida Manatee 9 1 0 2020-02-23
#> 4 California Napa 9 1 0 2020-02-23
#> 5 New Hampshire Grafton 9 2 0 2020-02-23
#> 6 Washington Spokane 9 4 0 2020-02-23
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7.1 Tidy Data
The tidyverse is designed around interacting with tidy data with the
premise that using data in a tidy format can streamline our analysis. Data is
considered tidy if:

• Each variable is associated with a single column.

• Each observation is associated with a single row.

• Each value has its own cell.

Take a look at the sample data which stores information about the maternal
mortality rate for five countries over time (Roser and Ritchie 2013). This data
is not tidy because the variable for maternity mortality rate is associated with
multiple columns. Every row should correspond to one class observation.

mat_mort1 <- data.frame(country = c("Turkey", "United States",
"Sweden", "Japan"),

y2002 = c(64, 9.9, 4.17, 7.8),
y2007 = c(21.9, 12.7, 1.86, 3.6),
y2012 = c(15.2, 16, 5.4, 4.8))

head(mat_mort1)
#> country y2002 y2007 y2012
#> 1 Turkey 64.00 21.90 15.2
#> 2 United States 9.90 12.70 16.0
#> 3 Sweden 4.17 1.86 5.4
#> 4 Japan 7.80 3.60 4.8

However, we can make this data tidy by creating separate columns for country,
year, and maternity mortality rate as we demonstrate in the following code.
Now every observation is associated with an individual row.

mat_mort2 <- data.frame(
country = rep(c("Turkey", "United States", "Sweden", "Japan"), 3),
year = c(rep(2002, 4), rep(2007, 4), rep(2012, 4)),
mat_mort_rate = c(64.0, 9.9, 4.17, 7.8, 21.9, 12.7, 1.86, 3.6,

15.2, 16, 5.4, 4.8))
head(mat_mort2)
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#> country year mat_mort_rate
#> 1 Turkey 2002 64.00
#> 2 United States 2002 9.90
#> 3 Sweden 2002 4.17
#> 4 Japan 2002 7.80
#> 5 Turkey 2007 21.90
#> 6 United States 2007 12.70

7.2 Reshaping Data
The mobility and COVID-19 case data are both already in tidy form: each
observation corresponds to a single row, and every column is a single variable.
We might consider whether the lockdown dates should be re-formatted to be
tidy. Another way to represent this data would be to have each observation
be the start or end of a stay-at-home order.

To reshape our data, we use the pivot_longer() function to change the data
from what is called wide form to what is called long form. This kind of
pivot involves taking a subset of columns that we want to gather into a single
column while increasing the number of rows in the dataset. Before pivoting,
we have to think about which columns we are transforming. The image in
Figure 7.1 shows a picture of some data on whether students have completed
a physical, hearing, or eye exam. The data is presented in wide form on the
left and long form on the right. To transform wide data to long data, we have
identified a subset of columns cols that we want to transform (these cols are
phys, hear, and eye in the left table). The long form contains a new column
names_to that contains the exam type, and values_to that contains a binary
variable indicating whether or not each exam was completed.

In our case, we want to take the lockdown start and end columns and create
two new columns: one column will indicate whether or not a date represents
the start or end of a lockdown, and the other will contain the date itself.
These are called the key and value columns, respectively. The key column gets
its values from the names of the columns we are transforming (or the keys),
whereas the value column gets its values from the entries in those columns (or
the values).

The pivot_longer() function takes in a data table, the columns cols that we
are pivoting to longer form, the column name names_to that will store the
data from the previous column names, and the column name values_to that
will store the information from the columns gathered. In our case, we name
the first column Lockdown_Event, since it will contain whether each date is the
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Figure 7.1: Pivoting Longer.

start or end of a lockdown, and we name the second column Date. Take a look
at the result.

lockdown_long <- lockdowndates %>%
pivot_longer(cols = c("Lockdown_Start", "Lockdown_End"),

names_to = "Lockdown_Event", values_to = "Date") %>%
mutate(Date = as.Date(Date, formula ="%Y-%M-%D"),

Lockdown_Event = ifelse(Lockdown_Event=="Lockdown_Start",
"Start", "End")) %>%

na.omit()
head(lockdown_long)
#> # A tibble: 6 x 3
#> State Lockdown_Event Date
#> <chr> <chr> <date>
#> 1 Alabama Start 2020-04-04
#> 2 Alabama End 2020-04-30
#> 3 Alaska Start 2020-03-28
#> 4 Alaska End 2020-04-24
#> 5 Arizona Start 2020-03-31
#> 6 Arizona End 2020-05-16

In R, we can also transform our data in the opposite direction (from long
form to wide form instead of from wide form to long form) using the function
pivot_wider(). This function again first takes in a data table, but now we
specify the arguments names_from and values_from. The former indicates the
column that R should get the new column names from, and the latter indicates
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where the row values should be taken from. For example, in order to pivot
our lockdown data back to wide form in the following code, we specify that
names_from is the lockdown event and values_from is the date itself. Now we
are back to the same form as before!

lockdown_wide <- pivot_wider(lockdown_long,
names_from = Lockdown_Event,
values_from = Date)

head(lockdown_wide)
#> # A tibble: 6 x 3
#> State Start End
#> <chr> <date> <date>
#> 1 Alabama 2020-04-04 2020-04-30
#> 2 Alaska 2020-03-28 2020-04-24
#> 3 Arizona 2020-03-31 2020-05-16
#> 4 California 2020-03-19 2021-01-25
#> 5 Colorado 2020-03-26 2020-04-27
#> 6 Connecticut 2020-03-23 2020-05-20

Here’s another example: suppose that I want to create a data frame where the
columns correspond to the number of cases for each state in New England,
and the rows correspond to the numbered months. First, I need to filter my
data to New England and then summarize my data to find the number of
cases per month. I use the month() function to be able to group by month and
state. Additionally, you can see that I add an ungroup() at the end. When
we summarize on data grouped by more than one variable, the summarized
output is still grouped. In this case, the warning message states that the data
is still grouped by state.

ne_cases <- covidcases %>%
filter(state %in% c("Maine", "Vermont", "New Hampshire",

"Connecticut", "Rhode Island",
"Massachusetts")) %>%

mutate(month = month(date)) %>%
group_by(state, month) %>%
summarize(total_cases = sum(weekly_cases)) %>%
ungroup()

head(ne_cases)
#> # A tibble: 6 x 3
#> state month total_cases
#> <chr> <dbl> <int>
#> 1 Connecticut 3 7489
#> 2 Connecticut 4 22764
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#> 3 Connecticut 5 13640
#> 4 Connecticut 6 2913
#> 5 Connecticut 7 3062
#> 6 Connecticut 8 3031

Now, I need to convert this data to wide format with a column for each state,
so my names_from argument is state. Further, I want each row to have the
case values for each state, so my values_from argument is total_cases. The
format of this data may not be tidy, but it allows me to quickly compare cases
across states.

pivot_wider(ne_cases, names_from = state, values_from = total_cases)
#> # A tibble: 7 x 7
#> month Connecticut Maine Massachusetts `New Hampshire` `Rhode

Island`↪

#> <dbl> <int> <int> <int> <int> <int>
#> 1 3 7489 510 14971 744 1006
#> 2 4 22764 716 54704 1875 7513
#> 3 5 13640 1378 33913 2503 5558
#> 4 6 2913 831 6454 807 1426
#> 5 7 3062 540 8841 758 1741
#> # i 2 more rows
#> # i 1 more variable: Vermont <int>

7.2.1 Practice Question
Create a similar data frame as we did in the previous example but this time
using the mobility dataset. In other words, create a data frame where the
columns correspond to the average mobility for each state in New England,
and the rows correspond to the numbered months. You should get a result
that looks like in Figure 7.2.

# Insert your solution here:

The pivots seen so far were relatively simple in that there was only one set of
values we were pivoting on (e.g., the lockdown date, COVID-19 cases). The
tidyr package1 provides examples of more complex pivots that you might
want to apply to your data (Wickham, Vaughan, and Girlich 2023).

1https://tidyr.tidyverse.org/articles/pivot.html

https://tidyr.tidyverse.org/articles/pivot.html
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Figure 7.2: Pivoting Mobility Data.

7.3 Merging Data with Joins
In the last section, we saw how to manipulate our current data into new
formats. Now, we see how we can combine multiple data sources. Merging
two data frames is called joining, and the functions we use to perform this
joining depends on how we want to match values between the data frames.
For example, we can join information about age and statin use from table1
and table2 matching by name.

table1 <- data.frame(age = c(14, 26, 32),
name = c("Alice", "Bob", "Alice"))

table2 <- data.frame(name = c("Carol", "Bob"),
statins = c(TRUE, FALSE))

full_join(table1, table2, by = "name")
#> age name statins
#> 1 14 Alice NA
#> 2 26 Bob FALSE
#> 3 32 Alice NA
#> 4 NA Carol TRUE

The following list gives an overview of the different possible joins. For each
join type, we specify two tables, table1 and table2, and the by argument,
which specifies the columns used to match rows between tables.
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Types of Joins:

• left_join(table1, table2, by): Joins each row of table1 with all matches
in table2.

• right_join(table1, table2, by): Joins each row of table2 with all matches
in table1 (the opposite of a left join)

• inner_join(table1, table2, by): Looks for all matches between rows in
table1 and table2. Rows that do not find a match are dropped.

• full_join(table1, table2, by): Keeps all rows from both tables and joins
those that match. Rows that do not find a match have NA values filled in.

• semi_join(table1, table2, by): Keeps all rows in table1 that have a match
in table2 but does not join to any information from table2.

• anti_join(table1, table2, by): Keeps all rows in table1 that do not have
a match in table2 but does not join to any information from table2. The
opposite of a semi-join.

We first demonstrate a left-join using the left_join() function. This function
takes in two data tables (table1 and table2) and the columns to match rows
by. In a left-join, for every row of table1, we look for all matching rows in
table2 and add any columns not used to do the matching. Thus, every row
in table1 corresponds to at least one entry in the resulting table but possibly
more if there are multiple matches. In the subsequent code chunk, we use a
left-join to add the lockdown information to our covidcases data. In this case,
the first table is covidcases and we match by state. Since the state column
has a slightly different name in the two data frames (“state” in covidcases
and “State” in lockdowndates), we specify that state is equivalent to State in
the by argument.

covidcases_full <- left_join(covidcases, lockdowndates,
by = c("state" = "State"))

head(covidcases_full)
#> # A tibble: 6 x 8
#> state county week weekly_cases weekly_deaths date
#> <chr> <chr> <dbl> <int> <int> <date>
#> 1 California Marin 9 1 0 2020-02-23
#> 2 California Orange 9 3 0 2020-02-23
#> 3 Florida Manatee 9 1 0 2020-02-23
#> 4 California Napa 9 1 0 2020-02-23
#> 5 New Hampshire Grafton 9 2 0 2020-02-23
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#> 6 Washington Spokane 9 4 0 2020-02-23
#> # i 2 more variables: Lockdown_Start <date>, Lockdown_End <date>

These two new columns allow us to determine whether the start of each
recorded week was during a lockdown. We use the between() function to create
a new column lockdown before dropping the two date columns. We can check
that this column worked as expected by choosing a single county to look at.

covidcases_full <- covidcases_full %>%
mutate(lockdown = between(date, Lockdown_Start, Lockdown_End)) %>%
select(-c(Lockdown_Start, Lockdown_End))

covidcases_full %>%
filter(state == "Alabama", county == "Jefferson",

date <= as.Date("2020-05-10"))
#> # A tibble: 10 x 7
#> state county week weekly_cases weekly_deaths date

lockdown↪

#> <chr> <chr> <dbl> <int> <int> <date> <lgl>
↪

#> 1 Alabama Jefferson 11 21 0 2020-03-08
FALSE↪

#> 2 Alabama Jefferson 12 70 0 2020-03-15
FALSE↪

#> 3 Alabama Jefferson 13 191 0 2020-03-22
FALSE↪

#> 4 Alabama Jefferson 14 179 12 2020-03-29
FALSE↪

#> 5 Alabama Jefferson 15 159 4 2020-04-05 TRUE
↪

#> # i 5 more rows

We now want to add in the mobility data. In the previous join, we wanted to
keep any observation in covidcases regardless if it was in the lockdowndates
data frame. Therefore, we used a left-join. In this case, we only want to keep
observations that have mobility data for that state on each date. This indicates
that we want to use an inner-join. The function inner_join() takes in two data
tables (table1 and table2) and the columns to match rows by. The function
only keeps rows in table1 that match to a row in table2. Again, those columns
in table2 not used to match with table1 are added to the resulting outcome.
In this case, we match by both state and date.
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covidcases_full <- inner_join(covidcases_full, mobility,
by = c("state", "date")) %>%

select(-c(samples, m50_index))
head(covidcases_full)
#> # A tibble: 6 x 8
#> state county week weekly_cases weekly_deaths date

lockdown↪

#> <chr> <chr> <dbl> <int> <int> <date> <lgl>
↪

#> 1 Florida Okalo~ 10 1 0 2020-03-01 FALSE
↪

#> 2 Georgia Charl~ 10 1 0 2020-03-01 FALSE
↪

#> 3 Massachus~ Essex 10 1 0 2020-03-01 FALSE
↪

#> 4 New York Rockl~ 10 6 0 2020-03-01 FALSE
↪

#> 5 Indiana Hendr~ 10 2 0 2020-03-01 FALSE
↪

#> 6 California Marin 10 1 0 2020-03-01 FALSE
↪

#> # i 1 more variable: m50 <dbl>

7.3.1 Practice Question
Look at the two data frames, df_A and df_B, defined in the following code.
What kind of join would produce the data frame in Figure 7.3? Perform this
join yourself.

df_A <- data.frame(patient_id = c(12, 9, 12, 8, 14, 8),
visit_num = c(1, 1, 2, 1, 1, 2),
temp = c(97.5, 96, 98, 99, 102, 98.6),
systolic_bp = c(120, 138, 113, 182, 132, 146))

df_A
#> patient_id visit_num temp systolic_bp
#> 1 12 1 97.5 120
#> 2 9 1 96.0 138
#> 3 12 2 98.0 113
#> 4 8 1 99.0 182
#> 5 14 1 102.0 132
#> 6 8 2 98.6 146
df_B <- data.frame(patient_id = c(12, 12, 12, 8, 8, 8, 14, 14),
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Figure 7.3: Joining Data.

visit_num = c(1, 2, 3, 1, 2, 3, 1, 2),
digit_span = c(3, 5, 7, 7, 9, 5, 8, 7))

df_B
#> patient_id visit_num digit_span
#> 1 12 1 3
#> 2 12 2 5
#> 3 12 3 7
#> 4 8 1 7
#> 5 8 2 9
#> 6 8 3 5
#> 7 14 1 8
#> 8 14 2 7

# Insert your solution here:

7.4 Exercises
1. Take a look at the provided code. What is wrong with it? Hint:

think about what causes the warning message.
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visit_info <- data.frame(
name.f = c("Phillip", "Phillip", "Phillip", "Jessica",

"Jessica"),
name.l = c("Johnson", "Johnson", "Richards", "Smith",

"Abrams"),
measure = c("height", "age", "age", "age", "height"),
measurement = c(45, 186, 50, 37, 156)

)

contact_info <- data.frame(
first_name = c("Phillip", "Phillip", "Jessica", "Margaret"),
last_name = c("Richards", "Johnson", "Smith", "Reynolds"),
email = c("pr@aol.com", "phillipj@gmail.com",

"jesssmith@brown.edu", "marg@hotmail.com")
)

left_join(visit_info, contact_info,
by = c("name.f" = "first_name"))

#> Warning in left_join(visit_info, contact_info, by =
c(name.f = "first_name")): Detected an unexpected
many-to-many relationship between `x` and `y`.

↪

↪

#> i Row 1 of `x` matches multiple rows in `y`.
#> i Row 1 of `y` matches multiple rows in `x`.
#> i If a many-to-many relationship is expected, set

`relationship =↪

#> "many-to-many"` to silence this warning.
#> name.f name.l measure measurement last_name

email↪

#> 1 Phillip Johnson height 45 Richards
pr@aol.com↪

#> 2 Phillip Johnson height 45 Johnson
phillipj@gmail.com↪

#> 3 Phillip Johnson age 186 Richards
pr@aol.com↪

#> 4 Phillip Johnson age 186 Johnson
phillipj@gmail.com↪

#> 5 Phillip Richards age 50 Richards
pr@aol.com↪

#> 6 Phillip Richards age 50 Johnson
phillipj@gmail.com↪

#> 7 Jessica Smith age 37 Smith
jesssmith@brown.edu↪

#> 8 Jessica Abrams height 156 Smith
jesssmith@brown.edu↪
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2. First, use the covidcases data to create a new data frame called
sub_cases containing the total number of cases by month for the
states of California, Michigan, Connecticut, Rhode Island, Ohio,
New York, and Massachusetts. Then, manipulate the mobility data
to calculate the average m50 mobility measure for each month. Fi-
nally, merge these two datasets using an appropriate joining func-
tion.

3. Convert the sub_cases data frame from the previous exercise to
wide format so that each row displays the cases in each state for a
single month. Then, add on the average m50 overall for each month
as an additional column using a join function.
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Visualization with ggplot2

The package ggplot2 (Wickham 2016) is another useful package in the tidy-
verse that allows statisticians to use visualizations to communicate key find-
ings and results in a compelling format. In this chapter, we learn about the
three main components in a ggplot object and then expand on that format by
learning more about the different layers we can use to create various plots. As
with the dplyr functions, there are many functions to cover, and they build
upon one another.

The three packages we use in this chapter are tidyverse, HDSinRdata, and
patchwork (Pedersen 2022), the last of which is a nice package for combining
multiple plots together into a single figure. We use the data from the Pitts-
burgh pain clinic (Alter et al. 2021) introduced in Chapter 3 to create our
visuals. You can refresh your memory about this data by reading the data
documentation. For the purposes of this chapter, we take a sample of 5,000
patients that are complete cases at baseline to reduce the computation time
to display each plot. You can ignore how the code used to find this sample
works.

library(tidyverse)
library(HDSinRdata)
library(patchwork)
data(pain)

# sampling data
set.seed(5)
pain_df_sub <- subset(pain,

select = -c(PAIN_INTENSITY_AVERAGE.FOLLOW_UP))
pain_df <- pain[complete.cases(pain_df_sub), ]
pain_df <- pain_df[sample(1:nrow(pain_df), 5000, replace = FALSE),]

121



122 8 Visualization with ggplot2

8.1 Intro to ggplot
We’ll begin by demonstrating how to create a scatter plot in ggplot2 to
introduce the three key elements of a ggplot2 object. Specifically, we create
a scatter plot of a patient’s depression vs. anxiety score. To start a graph,
we can use the ggplot() function to create a ggplot object as shown in the
following code. Note that this brings up a gray box; this is the base that we
build up from.

ggplot()

Next, we can begin adding layers to our ggplot object. One type of layer is a
geom, which creates a geometric object. In the next code chunk, we use the
geom_point() function to add a scatter plot layer. For this function, we first
need to specify which data we want to use, and then we need to tell R how to
use that data to create the scatter plot using the aes() function, which creates
an aesthetic. For a scatter plot, we need to at least specify the x-axis and
y-axis in the aesthetic. Both the data and the aesthetic can either be specified
in our initial ggplot() function, which passes this information to all future
layers, or in the geom_point() function itself. In the following code, we specify
the aesthetic in the geom function but also include two alternative ways to
code the same image in the subsequent code chunk. The resulting plot shows
a fairly linear relationship between anxiety and depression.
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ggplot(pain_df) + geom_point(aes(x=PROMIS_ANXIETY,
y = PROMIS_DEPRESSION))
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# Alternative 1:
ggplot(pain_df, aes(x = PROMIS_ANXIETY, y = PROMIS_DEPRESSION)) +
geom_point()

# Alternative 2:
ggplot() +
geom_point(data = pain_df, aes(x = PROMIS_ANXIETY,

y = PROMIS_DEPRESSION))

If we want to improve our plot, we may want to add different labels and a title.
To do so, we use the labs() function to add a layer in which we can specify all
labels. Additionally, I have passed more information to the geometry layer by
changing the color, size, and shape of the points. These things are specified
outside of the aes() function since they do not come from the data; every
point has the same color, size, and shape in this example.

ggplot(pain_df)+
geom_point(aes(x = PROMIS_ANXIETY, y = PROMIS_DEPRESSION),

color = "blue", size = 2, shape = 5) +
labs(x = "PROMIS Anxiety Score", y = "PROMIS Depression Score",

title = "Depression vs Anxiety Scores")
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Let’s create another example. This time, I create a histogram for initial
recorded pain level. To find the corresponding geom for the type of plot we’d
like to make, we can use the data visualization cheat sheet from Posit1. The
first page lists all the geom options available along with what aesthetics we
can set for each option. For example, here we are interested in plotting the
distribution of one continuous variable, and under the geom_histogram() func-
tion we can see that we can specify x (the variable whose distribution we want
to plot) as well as binwidth, y, alpha, color, fill, linetype, size, and weight.
By default, the y value in a histogram is the count for each bin.

In the following code, you can see that we updated the color (color), fill (fill),
and opacity (alpha) of our histogram bars and updated the number of bins
to be 11 (to account for the possible values 0-10). Additionally, we used the
theme_minimal() function to change the background colors used. You can find
the available themes on the second page of the cheat sheet. Try changing the
theme of the following plot to theme_bw().

ggplot(pain_df)+
geom_histogram(aes(x = PAIN_INTENSITY_AVERAGE), color = "violetred",

fill = "lightblue", alpha = 0.5, bins = 11) +
labs(x = "Patient Reported Pain Intensity", y = "Count")+
theme_minimal()

1https://posit.co/wp-content/uploads/2022/10/data-visualization-1.pdf

https://posit.co/wp-content/uploads/2022/10/data-visualization-1.pdf
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8.1.1 Practice Question
Recreate Figure 8.1.

# Insert your solution here:

8.2 Adjusting the Axes and Aesthetics
We can further control how each aesthetic element is displayed using scale
functions. For example, suppose that I want to update the previous plot.
In particular, I first want to update the x-axis to display all of the values
0 to 10 instead of 0, 2.5, 5, etc.. To update the x-axis, I need to find the
corresponding scale function for x with continuous values. This function is
scale_x_continuous(), which allows me to specify limits (limits), breaks
(breaks), and labels (labels). The scale functions can be found on the sec-
ond sheet of the cheat sheet. In this case, I just want to update the breaks to
be all integer values from 0 to 10.

ggplot(pain_df)+
geom_histogram(aes(x = PAIN_INTENSITY_AVERAGE), color = "violetred",

fill = "lightblue", alpha = 0.5, bins = 11) +



126 8 Visualization with ggplot2

Figure 8.1: Line Plot.

labs(x = "Patient Reported Pain Intensity", y = "Count")+
scale_x_continuous(breaks = 0:10)+
theme_minimal()
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Now, let’s take a more complex example. The following plot shows each pa-
tient’s reported sleep disturbance vs. physical function and colors each point
by their reported pain intensity. Since some points might overlap in values,
we added position="jitter" to the geom_point() function to jitter the points,
which corresponds to adding some random noise to each point’s position. As
presented, this plot is difficult to interpret. For example, the color of pain
intensity makes it hard to see how pain changes, and the legend title needs to
be simpler.

ggplot(pain_df)+
geom_point(aes(x = PROMIS_PHYSICAL_FUNCTION,

y = PROMIS_SLEEP_DISTURB_V1_0,
color = PAIN_INTENSITY_AVERAGE), position="jitter")
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Suppose that we wanted to visualize the pain intensity and sleep disturbance
for patients with below-average physical function. Note that both sleep dis-
turbance and physical function are reported as T-Scores, meaning that the
raw scores have been converted to a standardized score with mean 50 and
standard deviation 10 within the population. We can use the scale functions
to update our axes and labels to reflect this information. As before, we need
to use the scale_x_continuous() function to update the x-axis for a continu-
ous variable. In this case, we update the limits (to restrict to below-average
physical function), breaks, and labels. We similarly update the y-axis.

Lastly, suppose we want to update the color aesthetic. As before, this aes-
thetic corresponds to a continuous variable. The cheat sheet provides several
possible scale functions depending on how we want to specify the color gra-
dient. We choose the scale_color_gradient() function, since this allows us
to specify the low and high end colors. We can also specify the breaks for
the legend values similar to how we specified the breaks for the x- and y-
axes. The argument name also allows us to rename this legend. The palette
then converts this to a continuous color gradient. Note that in contrast to the
scale_color_gradient() function that we chose to use for this example, the
functions scale_color_gradient2() and scale_color_gradientn() allow you
to specify more color points in the gradient rather than just the two extreme
colors.

We can observe that decreased physical function is associated with higher
sleep disturbance, and that those with worse physical function and worse
sleep disturbance tend to have higher reported pain. Note that this time we
receive a warning message, which is because our axis limits have cut off some
points. To avoid this message, we could use the function coord_cartesian() to
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specify our limits which clips the values rather than removing points outside
the limits.

ggplot(pain_df)+
geom_point(aes(x = PROMIS_PHYSICAL_FUNCTION,

y = PROMIS_SLEEP_DISTURB_V1_0,
color = PAIN_INTENSITY_AVERAGE),

position = "jitter", alpha = 0.5) +
scale_x_continuous(limits = c(15,50), breaks = c(20, 30, 40, 50),

labels = c("-3 SD", "-2 SD", "-1 SD",
"Pop Mean")) +

scale_y_continuous(breaks = c(40, 50, 60, 70, 80),
labels = c("-1 SD", "Pop Mean", "+1 SD", "+2 SD",

"+3 SD")) +
scale_color_gradient(breaks = seq(0,10,2), low = "green",

high = "red", "Reported Pain") +
labs(x = "PROMIS Physical Function T-Score",

y = "PROMIS Sleep Disturbance T-Score") +
theme_minimal()

#> Warning: Removed 121 rows containing missing values or values
outside the scale↪

#> range (`geom_point()`).
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We now demonstrate these scale functions for discrete variables. In the sub-
sequent example, we first create a new race variable that has only three cate-
gories since other groups have limited observations. We then create a boxplot
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for pain intensity by race. There are two discrete aesthetics here: color and
the y-axis. This plot shows a higher median pain for black patients compared
to other races.

pain_df$PAT_RACE_CAT <- ifelse(pain_df$PAT_RACE %in% c("BLACK",
"WHITE"),

pain_df$PAT_RACE, "OTHER")
pain_df$PAT_RACE_CAT <- as.factor(pain_df$PAT_RACE_CAT)

ggplot(pain_df)+
geom_boxplot(aes(y = PAT_RACE_CAT, x = PAIN_INTENSITY_AVERAGE,

fill = PAT_RACE_CAT), alpha = 0.5) +
theme_minimal()
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The function scale_y_discrete() is the scale function that corresponds to a
discrete y-axis. In this case, we want to update the order and labels of this y-
axis. To update the order, we can either re-factor the variable using factor()
prior to plotting or update the limits argument of the scale function. The
function scale_fill_brewer() is a scale function to control the color palette
of a discrete variable used for the fill aesthetic. We use this function to specify
the color palette (palette) and to specify that we do not want a legend (guide).
Since we do not have a legend, we do not update the values and labels in this
function.
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ggplot(pain_df)+
geom_boxplot(aes(y = PAT_RACE_CAT, x = PAIN_INTENSITY_AVERAGE,

fill = PAT_RACE_CAT), alpha = 0.5) +
scale_x_continuous(breaks = c(0:10)) +
scale_y_discrete(limits = c("OTHER", "WHITE", "BLACK"),

labels = c("Other", "White", "Black")) +
scale_fill_brewer(palette = "Dark2", guide = "none") +
labs(x = "Reported Pain Intensity", y = "Reported Race") +
theme_minimal()
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The RColorBrewer package (Neuwirth 2022) contains several default
palettes to choose from, shown in the following output. You can also cre-
ate your own palette using the brewer.pal() function from this package. To
visualize a palette, you can use the available online tool2.

library(RColorBrewer)
display.brewer.all()

2https://colorbrewer2.org/

https://colorbrewer2.org/
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Figure 8.2: RColorBrewer Palettes.

Here is one more example of how you can use the scale functions; take a look at
the next plot example. We used two geom_histogram() calls, or layers, to plot
a histogram of pain at baseline and at follow-up. This allows us to visualize
that pain at follow-up tends to be lower than at baseline.

We also specify the fill to be by “Baseline” and “Follow-up” within the aes-
thetic, even though this isn’t a column in the data: this is a sort of manual way
to color the bars. We use the scale_fill_manual() function to then specify
the colors we want to use for these two categories using the values argument.
We received three warnings when creating this plot! This is because we have
many NA values for follow-up and because we did not specify the bin size for
either histogram. C’est la vie.

ggplot(pain_df)+
geom_histogram(aes(x = PAIN_INTENSITY_AVERAGE, fill = "Baseline")) +
geom_histogram(aes(x = PAIN_INTENSITY_AVERAGE.FOLLOW_UP,

fill = "Follow-Up")) +
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scale_x_continuous(breaks = c(0:10)) +
scale_fill_manual(values = c("violetred", "pink"),

name = "Measurement") +
labs(x = "Reported Pain Intensity", y = "Count") +
theme_minimal()

#> Warning: Removed 3604 rows containing non-finite outside the scale
range↪

#> (`stat_bin()`).
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8.3 Adding Groups
In the previous example, we created two histograms using two calls to the
geom_histogram() function. However, there is another way to create multi-
ple layers like this when you want to separate the geom layer based on a
variable. For example, suppose we want to visualize the distribution of physi-
cal function by whether someone has follow-up information. In the following
code, we create the variable HAS_FOLLOW_UP before using it in our aesthetic for
geom_density() as both the color and group. In fact, we do not have to add
the group argument because as soon as we specify to ggplot that we want to
color the density plots by this variable, it creates the grouping. Finally, we up-
date the legend for this grouping using the scale_color_discrete() function,
as the discrete variable HAS_FOLLOW_UP determines the color.
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pain_df$HAS_FOLLOW_UP <-
!is.na(pain_df$PAIN_INTENSITY_AVERAGE.FOLLOW_UP)

ggplot(pain_df) +
geom_density(aes(x = PROMIS_PHYSICAL_FUNCTION,

group = HAS_FOLLOW_UP,
color= HAS_FOLLOW_UP)) +

scale_x_continuous(breaks = c(0:10)) +
scale_color_discrete(name = "Follow-Up", labels = c("No", "Yes")) +
labs(x = "PROMIS Physical Function T-Score",

y = "Estimated Density") +
theme_minimal()
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Let’s try another example. Suppose that we want to find the distribution
of initial overall pain by those that do and do not have a follow-up. In this
case, we want to plot the proportion of each pain score for each group rather
than compare counts. We first need to find these proportions, which we do by
grouping and summarizing over our data.

pain_df_grp <- pain_df %>%
group_by(HAS_FOLLOW_UP, PAIN_INTENSITY_AVERAGE) %>%
summarize(tot = n()) %>%
mutate(prop = tot/sum(tot)) %>%
ungroup()

head(pain_df_grp)
#> # A tibble: 6 x 4
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#> HAS_FOLLOW_UP PAIN_INTENSITY_AVERAGE tot prop
#> <lgl> <dbl> <int> <dbl>
#> 1 FALSE 0 8 0.00222
#> 2 FALSE 1 16 0.00444
#> 3 FALSE 2 62 0.0172
#> 4 FALSE 3 132 0.0366
#> 5 FALSE 4 273 0.0757
#> 6 FALSE 5 508 0.141

We can now use the geom_col() function to create a barplot of these propor-
tions. By default, this function stacks the bars on top of each other when there
is grouping. Try adding position="dodge" to the geom_col() function to place
the bars side by side instead of on top of each other.

ggplot(pain_df_grp)+
geom_col(aes(x = PAIN_INTENSITY_AVERAGE, y = prop,

fill = HAS_FOLLOW_UP)) +
scale_x_continuous(breaks = c(0:10)) +
scale_fill_discrete(name = "Seen at Follow Up",

labels = c("No", "Yes")) +
labs(x = "Reported Pain Intensity", y = "Proportion") +
theme_minimal()
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8.3.1 Practice Question
Recreate Figure 8.3.

Figure 8.3: BMI Distribution.

# Insert your solution here:

Another way to visualize data by group is to add a facet wrap to your ggplot
object. Facets divide a plot into subplots based on one or more discrete variable
values. We can arrange these plots as a grid where the rows and/or columns
correspond to the variables we are grouping by using facet_grid() and specify-
ing the column and row variables using the col and row arguments respectively.
Or we can wrap the plots into a rectangular format using facet_wrap() and
specifying the columns using the facet argument. In the following code, we
take one of our previous plots and add a facet grid where the columns of the
grid are given by a racial group. If we had set row=vars(PAT_RACE_CAT), then
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this would stack the plots vertically. Note that we have to specify the variables
inside the vars() function.

ggplot(pain_df)+
geom_histogram(aes(x = PAIN_INTENSITY_AVERAGE, fill = "Baseline")) +
geom_histogram(aes(x = PAIN_INTENSITY_AVERAGE.FOLLOW_UP,

fill = "Follow-Up")) +
scale_x_continuous(breaks = c(0:10)) +
scale_fill_manual(values = c("violetred", "pink"),

name = "Measurement") +
labs(x= "Reported Pain Intensity", y = "Count") +
facet_grid(row = vars(PAT_RACE_CAT))+
theme_minimal()

#> Warning: Removed 3604 rows containing non-finite outside the scale
range↪

#> (`stat_bin()`).
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8.4 Extra Options
For our final plot, we will demonstrate additional features not yet covered
in this chapter. To create this plot, we first find the number of participants
who selected each body region as well as the average pain intensity for those
patients. We also classify each body part region into larger groups.
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pain_body_map <- data.frame(part = names(pain_df)[2:75])
pain_body_map$num_patients <- colSums(pain_df[, 2:75])
pain_body_map$perc_patients <- pain_body_map$num_patients /

nrow(pain_df)
pain_body_map$avg_pain <- colSums(pain_df[, 2:75] *

pain_df$PAIN_INTENSITY_AVERAGE) /
pain_body_map$num_patients

pain_body_map <- pain_body_map %>%
mutate(region = case_when(
part %in% c("X208", "X209", "X218", "X219", "X212",

"X213") ~ "Back",
part %in% c("X105", "X106", "X205", "X206") ~ "Neck",
part %in% c("X107", "X110", "X207", "X210") ~ "Shoulders",
part %in% c("X108", "X109", "X112", "X113") ~ "Chest/Abs",
part %in% c("X126", "X127", "X228", "X229",

"X131", "X132", "X233", "X234") ~ "Legs",
part %in% c("X111", "X114", "X211", "X214", "X115", "X116",

"X117", "X118", "X217", "X220") ~ "Arms",
part %in% c("X119", "X124", "X221", "X226", "X125", "X128",

"X227", "X230") ~ "Wrists/Hands",
part %in% c("X215", "X216") ~ "Elbows",
part %in% c("X135", "X136", "X237", "X238", "X133", "X134",

"X235", "X236") ~ "Feet/Ankles",
part %in% c("X129", "X130", "X231", "X232") ~ "Knees",
part %in% c("X101", "X102", "X103", "X104", "X201", "X203",

"X202", "X204") ~ "Head",
part %in% c("X120", "X121", "X122", "X123", "X222", "X223",

"X224", "X225") ~ "Hips"))

head(pain_body_map)
#> part num_patients perc_patients avg_pain region
#> 1 X101 323 0.0646 6.69 Head
#> 2 X102 322 0.0644 6.82 Head
#> 3 X103 165 0.0330 6.86 Head
#> 4 X104 165 0.0330 6.95 Head
#> 5 X105 493 0.0986 6.90 Neck
#> 6 X106 507 0.1014 6.92 Neck

Within the theme we’ve chosen, we are able to update any of the theme options
(see ?theme). In the following code, we use the theme() function to update the
legend position to the bottom and the grid lines to light pink. Additionally,
we add a horizontal line using the geom_hline() function (geom_vline() and
geom_abline() can add vertical or diagonal lines, respectively) and add a text
annotation using the annotate() function. The resulting plot shows the aver-
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age pain value for each body part as well as the proportion of patients who
categorized it as being painful.

ggplot(pain_body_map) +
geom_label(aes(x = perc_patients, y = avg_pain, label = part,

color = region)) +
geom_hline(yintercept = mean(pain_body_map$avg_pain)) +
annotate(geom = "text", label = "Average Pain Value",

x = 0.35, y = 7.0) +
labs(x = "Proportion Patients Selected Region",

y = "Average Pain of Patients") +
theme_minimal()+
theme(legend.position="bottom",

panel.grid.major = element_line(color = "lightpink"))
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So far, we have not saved any of our figures as objects. In the next example, I
create two plots and save them as objects named p1 and p2. If we want to save
these plots, we can use the ggsave() function, which saves the last plot gen-
erated under the file name provided. Additionally, I can use the patchwork
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package to incorporate multiple plots together. A + between plots adds them
together into a single figure, and then the plot_layout() function allows us to
specify the grid used to arrange our figures. We have added an extra element
using the guide_area() function to create a placeholder for the legends and
then used the guide = "collect" argument in the plot_layout() function to
specify that all guides should be put together.

p1 <- ggplot(pain_body_map) +
geom_label(aes(x = perc_patients, y = avg_pain, label = part,

color = region)) +
geom_hline(yintercept = mean(pain_body_map$avg_pain)) +
annotate(geom = "text", label = "Average Pain Value",

x = 0.35, y = 7.0) +
labs(x = "Proportion of Patients Selecting Region",

y = "Average Pain of Patients") +
scale_color_discrete(name="Body Part")+
theme_minimal()+
theme(legend.position = "bottom",

panel.grid.major = element_line(color = "lightpink"))

p2 <- ggplot(pain_body_map) +
geom_histogram(aes(x = perc_patients), color = "violetred",

fill = "lightpink") +
labs(x = "Proportion of Patients Selecting Region", y = "Count") +
theme_minimal()+
theme(panel.grid.major = element_line(color = "lightpink"))

p1 + p2 + guide_area() + plot_layout(ncol=1, guides = "collect",
axes = "collect")
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ggsave("images/visualization_ggplot/myplot.png", height=10)

8.5 Exercises
For this chapter’s exercises, use the covidcases dataset that we first introduced
in Chapter 5 to recreate some plots. These are complex plots, so try to build
them up one step at a time and just try to get as close as possible to the given
examples.

1. Replicate the following combined plot in Figure 8.4, which shows
the weekly COVID-19 cases in the U.S. as well as the weekly cases
by U.S. division. Hint: use the scale_color_gradientn() function
to replicate the color scale.

Figure 8.4: COVID-19 Cases Over Time by State.

2. Replicate the plot in Figure 8.5, which is a stacked area chart for
the total deaths from COVID-19 in the states with the top ten total
death counts overall.
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Figure 8.5: COVID-19 Cases Over Time by State.





9
Case Study: Exploring Early COVID-19 Data

In this chapter, we demonstrate a short exploratory analysis as a case study.
This case study focuses on COVID-19 cases and deaths during 2020 using the
covidcases and mobility datasets from the HDSinRdata package. A new
package that is used in this case study is usmap package (Di Lorenzo 2024),
which allows us to easily create spatial plots of the United States.

library(HDSinRdata)
library(tidyverse)
library(patchwork)
library(gt)
library(gtsummary)
library(usmap)

9.1 Pre-processing
We start by cleaning and merging our data. The covidcases data contains
weekly confirmed COVID-19 cases and deaths at the state and county level
in 2020. As the data description notes, some of these values may be negative
due to data discrepancies in the cumulative counts data. The mobility data
contains daily mobility statistics by state.

# Read in data
data(covidcases)
data(mobility)

First, we look at the columns in our data. We convert the date columns in the
mobility data to be recognized as a date using the as.Date() function. The
covidcases data has the week number of 2020. We create a similar column for
the mobility data.

145
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# Convert to date format and find week
mobility$date <- as.Date(mobility$date, formula = "%Y-%M-%D")
mobility$week <- week(mobility$date)

This allows us to summarize the mobility for a state across each week.

# Find average mobility for week
mobility_week <- mobility %>%
group_by(state, week) %>%
summarize(m50 = mean(m50, na.rm=TRUE), .groups = "drop")

head(mobility_week)
#> # A tibble: 6 x 3
#> state week m50
#> <chr> <dbl> <dbl>
#> 1 Alabama 9 13.2
#> 2 Alabama 10 14.6
#> 3 Alabama 11 13.4
#> 4 Alabama 12 8.98
#> 5 Alabama 13 7.81
#> 6 Alabama 14 6.73

For both of our datasets, we want to check whether each state was observed
across all dates and how the state’s name is represented. For the mobility data,
our data is at the state level, so we can use the table() function.

# Find number of dates recorded for each state
table(mobility_week$state)
#>
#> Alabama Alaska Arizona Arkansas
#> 27 27 27 27
#> California Colorado Connecticut Delaware
#> 27 27 27 27
#> Florida Georgia Hawaii Idaho
#> 27 27 27 27
#> Illinois Indiana Iowa Kansas
#> 27 27 27 27
#> Kentucky Louisiana Maine Maryland
#> 27 27 27 27
#> Massachusetts Michigan Minnesota Mississippi
#> 27 27 27 27
#> Missouri Montana Nebraska Nevada
#> 27 27 27 27
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#> New Hampshire New Jersey New Mexico New York
#> 27 27 27 27
#> North Carolina North Dakota Ohio Oklahoma
#> 27 27 27 27
#> Oregon Pennsylvania Rhode Island South Carolina
#> 27 27 27 27
#> South Dakota Tennessee Texas Utah
#> 27 27 27 27
#> Vermont Virginia Washington Washington, D.C.
#> 27 27 27 27
#> West Virginia Wisconsin Wyoming
#> 27 27 27

For the covidcases data, our data is at the county level. We need to summarize
the data instead. In this case, some states were observed for fewer weeks than
others.

# Find state names and number of weeks recorded for each state
unique(covidcases$state)
#> [1] "California" "Florida"
#> [3] "New Hampshire" "Washington"
#> [5] "Massachusetts" "Arizona"
#> [7] "Texas" "Georgia"
#> [9] "New York" "Wisconsin"
#> [11] "Oregon" "North Carolina"
#> [13] "Nebraska" "Illinois"
#> [15] "Utah" "Indiana"
#> [17] "Tennessee" "Pennsylvania"
#> [19] "Michigan" "Oklahoma"
#> [21] "Kentucky" "Connecticut"
#> [23] "Colorado" "Virginia"
#> [25] "Nevada" "South Dakota"
#> [27] "Minnesota" "Ohio"
#> [29] "Vermont" "New Jersey"
#> [31] "Maryland" "Iowa"
#> [33] "Missouri" "South Carolina"
#> [35] "Hawaii" "District of Columbia"
#> [37] "Louisiana" "Kansas"
#> [39] "Maine" "Arkansas"
#> [41] "Idaho" "Alabama"
#> [43] "Montana" "Mississippi"
#> [45] "North Dakota" "New Mexico"
#> [47] "Alaska" "Wyoming"
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#> [49] "Delaware" "West Virginia"
#> [51] "Rhode Island"
num_wks <- covidcases %>%
group_by(state) %>%
summarize(num_weeks = n_distinct(week), .groups = "drop")

summary(num_wks)
#> state num_weeks
#> Length:51 Min. :23.0
#> Class :character 1st Qu.:25.5
#> Mode :character Median :26.0
#> Mean :26.0
#> 3rd Qu.:27.0
#> Max. :27.0

Note that D.C. is written differently for each data source. We update this
name in the mobility data.

mobility_week$state[mobility_week$state == "Washington, D.C."] <-
"District of Columbia"

After checking the formatting of the state and week columns, we can now
merge our data together. In this case, we want to add the mobility data to
the case data and use a left_join().

# Join cases and mobility data
covid <- left_join(covidcases, mobility_week, by = c("state", "week"))

Next, we want to get some simple information about the continuous variables
in our data. We observe two key points. First, we can see the negative values
the data description warned us about, and second, there is no missing data.

summary(covid[, c("weekly_cases", "weekly_deaths", "m50")])
#> weekly_cases weekly_deaths m50
#> Min. : -188 Min. :-511 Min. : 0.0
#> 1st Qu.: 2 1st Qu.: 0 1st Qu.: 5.0
#> Median : 9 Median : 0 Median : 7.7
#> Mean : 87 Mean : 3 Mean : 7.7
#> 3rd Qu.: 39 3rd Qu.: 1 3rd Qu.: 9.9
#> Max. :35134 Max. :5226 Max. :49.4

These negative numbers are clear data discrepancies. When showing the dis-
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tribution of cases in our exploratory analysis, we may choose to either code
these as 0 or NA. We decide to re-code these negative values as NA.

# Set negative counts to NA
covid$weekly_cases <- replace(covid$weekly_cases,

which(covid$weekly_cases < 0),
NA)

covid$weekly_deaths <- replace(covid$weekly_deaths,
which(covid$weekly_deaths < 0),
NA)

As the last step in our pre-processing, we add in the state abbreviation and
region for each state using the state.name and state.region vectors available
in R. We code D.C. to be in the same region as Maryland and Virginia.

# Add region and abbreviation and remove county
region_key <- data.frame(state = c(state.name,

"District of Columbia"),
state_abb = c(state.abb, "DC"),
region = c(as.character(state.region),

"South"))

covid <- covid %>%
left_join(region_key, by = c("state"))

head(covid)
#> # A tibble: 6 x 8
#> state county week weekly_cases weekly_deaths m50 state_abb

region↪

#> <chr> <chr> <dbl> <int> <int> <dbl> <chr>
<chr>↪

#> 1 Califo~ Marin 9 1 0 7.50 CA West
#> 2 Califo~ Orange 9 3 0 7.50 CA West
#> 3 Florida Manat~ 9 1 0 9.68 FL South
#> 4 Califo~ Napa 9 1 0 7.50 CA West
#> 5 New Ha~ Graft~ 9 2 0 7.67 NH North~
#> 6 Washin~ Spoka~ 9 4 0 4.01 WA West
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9.2 Mobility and Cases Over Time
Now that our data are merged and cleaned, we start exploring mobility and
cases by region. The following summary table shows that these measures did
differ by region overall.

covid %>%
select(c("region", "m50", "weekly_cases", "weekly_deaths")) %>%
tbl_summary(by = "region", missing = "no") %>%
as_gt() %>%
cols_width(everything() ~ "55pt")

Characteristic North
Central, N
= 22,6531

Northeast,
N = 5,1651

South, N =
32,2761

West, N =
9,4361

m50 7.4 (5.4, 8.8) 4.2 (1.6, 5.2) 9.7 (7.1,
11.3)

4.3 (2.9, 7.0)

weekly_cases 5 (1, 22) 15 (3, 91) 13 (3, 50) 5 (1, 38)
weekly_deaths 0 (0, 0) 0 (0, 4) 0 (0, 1) 0 (0, 1)

1Median (IQR)

We then plot mobility over time both for the whole country and by region.
Across the country, we see a similar pattern in how mobility fluctuated, but
certain regions had overall higher mobility than others.

# Average mobility in the US over time - overall
pmob1 <- covid %>%
select(c(region, state, week, m50)) %>%
distinct() %>%
group_by(week) %>%
summarize(avg_m50 = mean(m50, na.rm=TRUE), .groups="drop") %>%
ggplot() +
geom_line(aes(x = week, y = avg_m50)) +
labs(x = "Week in 2020", y = "Average Mobility",

title = "Average Mobility in the US") +
theme_bw()

# Average mobility in the US over time - by region
pmob2 <- covid %>%
select(c(region, state, week, m50)) %>%
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distinct() %>%
group_by(region, week) %>%
summarize(avg_m50 = mean(m50, na.rm=TRUE), .groups="drop") %>%
ggplot() +
geom_line(aes(x = week, y = avg_m50, color = region)) +
labs(x = "Week in 2020", y = "Average Mobility",

title = "Average Mobility by Region in the US",
color = "Region") +

theme_bw() +
theme(legend.position = "bottom")
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We then look at cases and deaths by region. A limitation of these data are
that we do not have population counts which would allow us to standardize
these numbers. However, a secondary y-axis using the sec_axis() function
within scale_y_continuous() allows us to plot deaths and cases together. In
this case, the secondary axis is scaled by 1/10th of the primary axis.

# Change in number cases over time, per region
covid %>%
filter(!is.na(region)) %>%
group_by(region, week) %>%
summarize(weekly_cases = sum(weekly_cases, na.rm = TRUE),

weekly_deaths = sum(weekly_deaths, na.rm = TRUE),
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.groups = "drop") %>%
ggplot() +
geom_line(aes(x = week, y = weekly_cases, color = region,

linetype = "Cases")) +
geom_line(aes(x = week, y = weekly_deaths*10, color = region,

linetype = "Deaths")) +
scale_y_continuous(name = "Average Weekly Cases",

sec.axis = sec_axis(~./10,
name = "Average Weekly Deaths"))+

scale_linetype(name = "Measure") +
labs(x = "Week in 2020", color = "Region",

title = "Weekly Cases Over Time by Region") +
theme_bw()
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To examine how mobility and cases are related, we look at a scatter plot of
mobility and cases in California.

covid_ca <- covid %>% filter(state == "California")
ggplot(covid_ca)+
geom_point(aes(x = weekly_cases, y = m50), na.rm = TRUE) +
labs(x = "Weekly Cases", y = "Average Mobility")
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This motivates us to look at the correlation between these two columns by
state. We plot this using the plot_usmap() function from the usmap package.
Interestingly, we observe different relationships throughout the country, but
none of the correlations are particularly strong.

# Calculate and plot correlation between cases and mobility, y state
covid_cor <- covid %>%
group_by(state) %>%
summarize(correlation = cor(weekly_cases, m50,

use = "complete.obs"))

plot_usmap(regions = "states", data = covid_cor,
values = "correlation") +

scale_fill_gradient2(low = "darkblue", high = "darkred",
mid="white", name = "Correlation") +

labs(title = "Correlation Between Cases and Mobility") +
theme(legend.position = "right")
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Last, we look at how the total cases and deaths are related to each other. This
shows that the Northeast suffered more deaths per case overall, which may be
related to the lower mobility and negative correlation between mobility and
cases observed earlier.

# Relationship between cases and deaths summarized
covid %>%
group_by(region, state_abb) %>%
summarize(total_cases = sum(weekly_cases, na.rm = TRUE),

total_deaths = sum(weekly_deaths, na.rm = TRUE),
.groups = "drop") %>%

ggplot() +
geom_label(aes(x = total_cases, y = total_deaths, color = region,

label = state_abb), size = 1.5) +
labs(x = "Total Cases", y = "Total Deaths", color = "Region") +
theme_bw()
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10
Probability Distributions in R

In this chapter, we cover how to generate random samples in R from known
probability distributions and empirical distributions. Base R provides a set of
four functions for all common probability distributions. These can be used to
generate random samples and to calculate the corresponding density, quantile,
and cumulative functions that correspond to that distribution.

library(tidyverse)
library(HDSinRdata)

data(NHANESsample)

In the following code, we demonstrate an example of drawing random sam-
ples. Anytime we perform an operation in R in which the outcome has some
randomness, we are using R’s random number generator under the hood. This
means that the results change every time we run our code. In order to make
sure our code is replicable, we have to set a random seed, which makes the
results the same every time. The set.seed() function takes in a numeric seed
value. You can use any number as the seed. In the next code chunk, we first
sample a random value from the numbers 1 to 10 without setting a seed. Note
that every time you run this code chunk, the output can change. However, in
the following code chunk we set a seed, which means that the result is always
the same (in this case, it’s equal to 2).

sample(1:10, 1)
#> [1] 7

set.seed(5)
sample(1:10, 1)
#> [1] 2

159
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10.1 Probability Distribution Functions
All of the common discrete (e.g., Bernoulli, binomial) and continuous (e.g.,
normal, uniform, exponential, Poisson) probability distributions have corre-
sponding functions in R. For each of these distributions, there are four avail-
able functions:

• r[dist](): random sample function for the given distribution (e.g., rnorm(),
runif())

• d[dist](): density function for the distribution (e.g., dnorm(), dunif())
• p[dist](): cumulative distribution function for the distribution (e.g.,

pnorm(), punif())
• q[dist](): quantile function for the distribution (e.g., qnorm(), qunif())

Let’s see how these work in practice, using the normal and binomial distribu-
tions as examples.

10.1.1 Random Samples
The following code generates a sample of 100 random numbers following a
normal distribution with mean 5 and standard deviation 1. As you can see,
the function takes in n (the number of observations), mean (the mean with
default value 0), and sd (the standard deviation with default value 1). A
histogram plot (using the built-in hist() function) shows that the generated
values look roughly normally distributed.

x <- rnorm(n = 100, mean = 5, sd = 1)
hist(x)
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We can also input a vector instead of a single value for the mean or sd ar-
guments if we want each sample to come from its own normal distribution.
As an example, we generate 100 random numbers with the default standard
deviation of 1 where half of the samples have a mean of 0, and the other half
have a mean of 5.

x <- rnorm(n = 100, mean = rep(c(0,5), 50))
hist(x)
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For the binomial distribution, the difference is that we need to specify a prob-
ability p and number of trials size (rather than mean and sd in the normal
case) to specify the distribution. In the following code, we generate 100 ran-
dom numbers following a binomial distribution with 10 trials and a probability
0.5.

x <- rbinom(n = 100, p = 0.5, size = 10)
hist(x)
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We can also specify a different size or probability of success for each sample.
We repeat our sample but this time let the probability of success be 0.25 for
half of the sample and 0.75 for the other half.

x <- rbinom(n = 100, p = rep(c(0.25, 0.75), 50), size = 10)
hist(x)
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10.1.2 Density Function
Next, we look at the density function. Recall that the probability density
function for a normal distribution with mean 𝜇 and standard deviation 𝜎 is
given by the following formula.

𝑓𝑋(𝑥) = 1
𝜎

√
2𝜋 exp(−1

2 (𝑥 − 𝜇
𝜎 )

2
)

Using the following code, we can compare some of the values from the dnorm()
function to this equation and see that they are in fact equal. We could also
specify the mean and standard deviation in this function but choose to use
the default values (mean = 0 and sd = 1).

dnorm(0) == 1/sqrt(2*pi)
#> [1] TRUE
dnorm(1) == exp(-1/2)/sqrt(2*pi)
#> [1] TRUE
dnorm(2) == exp(-1/2*2^2)/sqrt(2*pi)
#> [1] TRUE

If we wanted to find the density function for several values, we can input a
vector to this density function. In the following code, we find the values of the
density function for a normal distribution with mean 1 and standard deviation
2 for values c(-1, 0, 1, 2, 3).
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dnorm(c(-1, 0, 1, 2, 3), mean = 1, sd = 2)
#> [1] 0.121 0.176 0.199 0.176 0.121

For the binomial distribution, dbinom() returns the probability of a certain
number of successes and corresponds to the probability density function.

𝑃(𝑋 = 𝑥) = (𝑠𝑖𝑧𝑒
𝑥 )𝑝𝑥(1 − 𝑝)𝑠𝑖𝑧𝑒−𝑥.

For example, we can find the probability of getting exactly 3 heads from 10
coin flips, each with a probability of 0.5 for heads.

dbinom(3, size = 10, p = 0.5)
#> [1] 0.117

While dnorm() allows us to specify any continuous values for 𝑥, dbinom() gives
us a warning if x contains non-integer values, since the support of a binomial
variable only includes integers.

dbinom(2.4, size = 10, p = 0.5)
#> Warning in dbinom(2.4, size = 10, p = 0.5): non-integer x = 2.400000
#> [1] 0

We can also specify a vector for a distribution’s parameters to find the distribu-
tion function for different distributions. For example, I find the the probability
density function for 𝑋 = 4 for the distribution with 𝑝 = 0.25 and 𝑝 = 0.5.

dbinom(4, size = 10, p = c(0.25, 0.5))
#> [1] 0.146 0.205

10.1.3 Cumulative Distribution
Next, we take a look at the cumulative distribution function. For the normal
distribution, the cumulative distribution is given by pnorm(), which takes in a
value x, a mean, and a sd and returns the probability that a random variable
following a 𝑁(𝑚𝑒𝑎𝑛, 𝑠𝑑) distribution is less than x. For example, for x equal
to the mean, this returns a 50% probability because the normal distribution
is symmetric with mean equal to the median. In the following code, we verify
this for two different values of the mean.
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pnorm(0)
#> [1] 0.5
pnorm(5, mean = 5, sd = 1)
#> [1] 0.5

Since the binomial distribution is discrete, it can only take on integer values
from 0 to size. This means that, for example, the pbinom() function returns
the same value for 3, 3.5, 3.6, all the way up to, but not including, 4. This
is because 𝑃 (𝑋 ≤ 3) = 𝑃(𝑋 ≤ 3.2) = 𝑃(𝑋 ≤ 3.5) = 𝑃(𝑋 ≤ 3.6) and so on.
Note that here we passed in a vector of values x.

pbinom(c(3, 3.5, 3.6, 4), size = 10, p = 0.5)
#> [1] 0.172 0.172 0.172 0.377

We can also vary the parameters for the distribution by passing a vector for
size and/or p to the cumulative distribution function. In the subsequent code
chunk, we find the probability that 𝑋 ≤ 3 and the probability that 𝑋 ≤ 4
with 12 trials and a probability 0.25 and with 10 trials and a probability 0.5.

pbinom(c(3, 3, 4, 4), size = c(12, 10, 12, 10),
p=c(0.25, 0.5, 0.25, 0.5))

#> [1] 0.649 0.172 0.842 0.377

10.1.4 Quantile Distribution
Lastly, we have the quantile distribution function, which is the inverse of the
cumulative distribution function. This function takes in a probability x, a
mean, and a sd and returns the value for which the cumulative distribution
function is equal to x. Thus, when x is equal to 0.5, the qnorm() function
returns the median of the distribution, which is equal to the mean for the
normal distribution.

qnorm(0.5)
#> [1] 0
qnorm(0.5, mean = 5, sd = 1)
#> [1] 5

For the discrete binomial distribution, the qbinom() function returns the
largest integer value for which the probability of being less than or equal
to that value is at most the inputted value x.
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qbinom(c(0.2, 0.3), size = 10, p = 0.5)
#> [1] 2 3

10.1.5 Reference List for Probability Distributions
In the previous examples, we only used the normal and binomial distributions.
The following list contains the other probability distributions available in R.
For each distribution, we have given the arguments for the r[dist]() function.
The other three functions have a similar format. Unless otherwise stated, the
parameter n is the number of observations.

• Beta: rbeta(n, shape1, shape2, ncp = 0) with shape parameters shape1
and shape2 (and optional non-centrality parameter ncp).

• Binomial: rbinom(n, size, prob) with probability of success prob and
number of trials size.

• Cauchy: rcauchy(n, location = 0, scale = 1) with location parameter
location and scale parameter scale.

• Chi-Square: rchisq(n, df, ncp = 0) with df degrees of freedom and
optional non-centrality parameter ncp.

• Exponential: rexp(n, rate = 1) with rate rate (i.e., mean = 1/rate).
• F: rf(n, df1, df2, ncp) with df1 and df2 degrees of freedom (and optional

non-centrality parameter ncp).
• Gamma: rgamma(n, shape, rate = 1, scale = 1/rate) with parameters

shape and scale (or alternatively specified by rate).
• Geometric: rgeom(n, prob) with probability parameter prob.
• Hypergeometric: rhyper(nn, m, n, k) with m white balls, n black balls,

and k balls chosen.
• Logistic: rlogis(n, location = 0, scale = 1) with parameters location

and scale.
• Log Normal: rlnorm(n, meanlog = 0, sdlog = 1) with mean meanlog and

standard deviation sdlog on the log scale.
• Negative Binomial: rnbinom(n, size, prob, mu) with parameters size

and prob.
• Normal: rnorm(n, mean = 0, sd = 1) with mean equal to mean and standard

deviation equal to sd.
• Poisson: rpois(n, lambda) with parameter lambda.
• Student t: rt(n, df, ncp) with df degrees of freedom (and optional non-

centrality parameter ncp).
• Uniform: runif(n, min = 0, max = 1) with minimum value min and maxi-

mum value max.
• Weibull: rweibull(n, shape, scale = 1) with parameters shape and scale.
• Wilcoxon Rank Sum: rwilcox(nn, m, n) with nn number of observations

and sample sizes m and n.
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• Wilcoxon Signed Rank: rsignrank(nn, n) with nn number of observations
and sample size n.

10.1.6 Practice Question
Set the random seed to be 123, and then generate 5 random numbers following
a uniform distribution with min 1 and max 5. Then, find the 0.15 quantile for
this same distribution (it should be equal to 1.6).

# Insert your solution here:

10.2 Empirical Distributions and Sampling Data
At the start of this chapter, we used the sample() function. This function can
also be used to sample from an empirical distribution. The sample(x, size,
replace=FALSE, prob=NULL) function takes in the values we want to sample
from x, the number of observations we want to sample size, and whether we
want to sample with replacement replace. If we don’t want to sample such
that each value has an equal probability of being chosen, we can also set a
probability vector prob, which must have the same length as x. In the following
code, we sample 500 rows without replacement from the NHANESsample data.
To do so, we select 500 values from the indices 1 to the number of rows in the
data. We then select rows of the data using these indices.

nhanes_sample_ids <- sample(1:nrow(NHANESsample), 500, replace =
FALSE)↪

nhanes_sample <- NHANESsample[nhanes_sample_ids, ]
dim(nhanes_sample)
#> [1] 500 21

We now demonstrate sampling with replacement. By doing so, we create a
new dataset that is sampled from the empirical distribution of the data and
that is called a bootstrap sample.

nhanes_sample_ids <- sample(1:nrow(NHANESsample), nrow(NHANESsample),
replace = TRUE)

nhanes_sample <- NHANESsample[nhanes_sample_ids, ]
dim(nhanes_sample)
#> [1] 31265 21
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Another way to sample from a data frame is to use the slice_sample() function
from the tidyverse. In this function, we can either specify the number of
observations to sample n or the proportion of observations to sample prop.
Additionally, we can sample with or without replacement by setting the value
of the argument replace (with default value FALSE). We use this function to
randomly sample 20% of observations without replacement.

nhanes_sample <- NHANESsample %>%
slice_sample(prop = 0.2, replace = FALSE)

dim(nhanes_sample)
#> [1] 6253 21

10.2.1 Practice Question
Set the random seed to 5 and then sample 50 observations with replacement
from the set of integers from 1 to 100. Take the mean of those observations;
it should be 56.7.

# Insert your solution here:

Beyond sampling, we can also find the empirical cumulative distribution. That
is, we can use a given vector to infer a distribution. In the following case, we
draw a random sample from a normal distribution vec and then find its empir-
ical cumulative distribution using the ecdf() function. This function actually
returns a function, which can then be used to find the sample cumulative distri-
bution for different values similar to the p[dist]() functions. In our example,
we find the sample probability that 𝑋 ≤ 0.

vec <- rnorm(100)
ecdf_vec <- ecdf(vec)
ecdf_vec(0)
#> [1] 0.63

We now plot this empirical distribution against the actual cdf using the
pnorm() function. Note that in order to do so, we create a sequence of possible
x values to pass to both pnorm() and ecdf_vec().

df <- data.frame(x = seq(-3, 3, 0.05))
df$ecdf <- ecdf_vec(df$x)
df$distn = pnorm(df$x)
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ggplot(df) +
geom_line(aes(x = x, y = ecdf), color = "black") +
geom_line(aes(x = x, y= distn), color = "red")
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In practice, the empirical cumulative distribution might involve data from a
given dataset that you want to use to represent the population’s distribution.
As an example, in the following code we find the empirical distribution of
blood lead level from the NHANESsample data frame. A blood lead level of 5
µg/dL or above is considered elevated. We can see 96.4% of observations have
a blood lead level below this threshold.

ecdf_lead <- ecdf(nhanes_sample$LEAD)
ecdf_lead(5)
#> [1] 0.961

10.3 Exercises
1. Assume the distribution of female heights is approximated by a nor-

mal distribution with a mean of 64 inches and a standard deviation
of 2.2 inches. Using this distribution, answer the following questions.
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•What is the probability that a randomly chosen female is 5
feet or shorter?

•What is the probability that a randomly chosen female is 6
feet or taller?

•Generate 500 random observations following this distribution
and find the sample 0.15 quantile. Then, compare this to the
0.15 quantile using the qdist() function.

2. Compute the probability that the height of a randomly chosen fe-
male is within 1 SD from the average height.

3. Create a vector of 100 patient IDs, and then use the sample() func-
tion to assign half of them to a treatment group and the other half
to a control group. Then, suppose those in the control group have
a reduction in viral load distributed as 𝑋 ∼ 100 ∗ 𝑒𝑥𝑝(𝑚𝑒𝑎𝑛 = 𝑉 ),
where 𝑉 follows a uniform distribution between 1 and 2, whereas
those who are in the treatment group have a reduction in viral
load distributed as 𝑋 ∼ 100 ∗ 𝑒𝑥𝑝(𝑚𝑒𝑎𝑛 = 3). Plot distributions of
reduction in viral load for both groups.



11
Hypothesis Testing

In this chapter, we look at hypothesis testing in R. We start with single sample
distributions and tests, and then we look at hypothesis tests for comparing
two samples. Examples include testing for positive correlations, performing
two-sample paired t-tests, and testing for equal variance among groups. The
data we use in this section comes from the Texas Health and Human Services
Department and includes the reported number of induced terminations of preg-
nancy (ITOPs) from 2016 to 2021, stratified by both race and county (Texas
Health & Human Services Commission 2016-2021). The data also contains the
rate of abortions per 1000 females aged 15-49. Read the data documentation
to see the full variable descriptions.

We use the tidyverse, gt, and gtsummary packages to help manipulate and
summarize the data. The car package (Fox, Weisberg, and Price 2023) con-
tains the function leveneTest() to implement a Levene’s test for homogeneity
of variance across groups, and all other hypothesis tests are available in base
R.

library(tidyverse)
library(car)
library(HDSinRdata)
library(gt)
library(gtsummary)

data(tex_itop)

11.1 Univariate Distributions and One-Sample Tests
Let’s begin by looking at a single outcome of interest - the number of induced
terminations of pregnancy (referred to as ITOPs or abortions below) in 2021
per 1000 females ages 15-49 in each county. We use the number of females
ages 15-49 as a proxy to scale the number of abortions by the population size,

171
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though this is not truly reflective of the number of people who can give birth
in each county.

county_rates_2021 <- tex_itop$total_rate[tex_itop$year == 2021]
hist(county_rates_2021, breaks = 35)
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We can see in the figure that this is a heavy-tailed distribution. In the following
code, we find the ten counties with the highest rates and see that there are
some counties that have very few total abortions but that have some of the
highest abortion rates. This indicates a small population. On the other hand,
we also observe Harris county, which contains the city of Houston and has
both a high total abortion count and a high abortion rate.

tex_itop %>%
filter(year == 2021) %>%
slice_max(n = 10, total_rate) %>%
dplyr::select(c(county, total_itop, total_rate))

#> # A tibble: 10 x 3
#> county total_itop total_rate
#> <chr> <dbl> <dbl>
#> 1 Loving 1 111.
#> 2 Terrell 5 50
#> 3 Concho 4 13.9
#> 4 Harris 14122 13.5
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#> 5 Irion 3 12.9
#> # i 5 more rows

Some of the counties are so small that we may want to consider dropping
them from our analysis. In particular, among these small counties, the rates
in Loving County and Terrell County are high enough that we might consider
them to be outliers. For this one-sample analysis, however, we do not remove
them. If we wanted to estimate the mean abortion rate among counties 𝜇,
we can do so by simply using the mean() function. For reference, the Centers
for Disease Control estimated the national abortion rate in 2020 to be 11.2
abortions per 1,000 women aged 15–44 years (Kortsmit 2023).

mean(county_rates_2021, na.rm = TRUE)
#> [1] 5.17

Within R we can also calculate a confidence interval for this mean. Recall
that a (1 − 𝛼)% confidence interval for the mean is given by the equation

̂𝜇 ± 𝑧1−𝛼/2 ⋅ �̂�√𝑛 , where ̂𝜇 is our sample mean, �̂�2 is the sample variance, and
𝑛 is the number of observations.

In the subsequent code chunk, we use this formula to calculate a 95% confi-
dence interval for the mean abortion rate among counties:

est_mean <- mean(county_rates_2021, na.rm = TRUE)
est_sd <- sd(county_rates_2021)
z_alpha <- dnorm(1 - 0.05 / 2)
n <- length(county_rates_2021)
c(est_mean - z_alpha * est_sd / sqrt(n),
est_mean + z_alpha * est_sd / sqrt(n))

#> [1] 5.04 5.29

If we want to display this nicely, we can use the round() function, which allows
us to specify a number of digits to be displayed, and the paste() function,
which creates a single character string from multiple inputs.

lower <- round(est_mean - z_alpha*est_sd/sqrt(n), 3)
upper <- round(est_mean + z_alpha*est_sd/sqrt(n), 3)
paste("Confidence Interval: (", lower, ",", upper, ")")
#> [1] "Confidence Interval: ( 5.044 , 5.289 )"

Suppose that we wanted to run a hypothesis test to compare the mean to a
pre-determined value. In particular, the Texas Heartbeat Act was introduced
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in 2021 and drastically reduced the number of eligible abortions. We could
test whether there were significantly fewer abortions in 2021 compared to
2020 using a one-sided t-test. Our null hypothesis is that 𝜇 ≥ 6.23, the mean
abortion rate in 2020. To run this hypothesis test, we use the t.test() function.
For a one-sample t-test, we need to specify our sample x, the alternative
hypothesis alternative (default is a two-sided test), the true value of the
mean mu (default 0), and a confidence level conf.level (default 0.95). In the
following code, we run this t-test, and we can see from the result that we reject
the null hypothesis at the 0.05 level and observe a statistically significant
decline in the abortion rate in 2021.

t.test(county_rates_2021, alternative = "less", mu = 6.23,
conf.level=0.95)

#>
#> One Sample t-test
#>
#> data: county_rates_2021
#> t = -2, df = 253, p-value = 0.02
#> alternative hypothesis: true mean is less than 6.23
#> 95 percent confidence interval:
#> -Inf 5.98
#> sample estimates:
#> mean of x
#> 5.17

The output for this test is printed. If we want to reference these values, we need
to save the result. The object t_test_res is a list that contains information
about the statistic, p-value, confidence interval, etc. The list of outputs is
similar to other test objects, so it is useful to look at what is contained in
each by reading the test documentation (?t.test). We find the p-value from
t_test_res.

t_test_res <- t.test(county_rates_2021, alternative = "less",
mu = 6.23, conf.level = 0.95)

names(t_test_res)
#> [1] "statistic" "parameter" "p.value" "conf.int"
#> [5] "estimate" "null.value" "stderr" "alternative"
#> [9] "method" "data.name"

t_test_res$p.value
#> [1] 0.0161
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11.1.1 Practice Question
Test whether there were significantly more abortions in 2019 compared to 2020
using a one-sided t-test. Your test statistic should be −6.4736.

# Insert your solution here:

One thing to consider is that the t.test() function assumes that the sample x
comes from a normal distribution. The one-sample Wilcoxon signed rank test
is a non-parametric alternative to the one-sample t-test that can be used to
compare the median value of a sample to a theoretical value without assuming
that the data are normally distributed. This test can be performed using the
wilcox.test() function and takes in the same arguments as the t.test()
function. In the following output, we can see that we again reject the null
hypothesis at the 0.05 level and conclude that the median abortion rate in
2021 was significantly lower than 5.14, which was the median rate in 2020.

wilcox_res <- wilcox.test(county_rates_2021, alternative = "less",
mu = 5.14, conf.level = 0.95)

wilcox_res
#>
#> Wilcoxon signed rank test with continuity correction
#>
#> data: county_rates_2021
#> V = 12807, p-value = 0.002
#> alternative hypothesis: true location is less than 5.14
wilcox_res$p.value
#> [1] 0.00193

11.2 Correlation and Covariance
We now look at two-sample tests. To start, we look at the 2020 and 2021 rates
by county. We pivot our data into a wider format in order to create 2020 and
2021 rate columns, and, this time, we filter out the Loving and Terrell counties
to remove outliers. We then create a scatter plot of 2021 vs. 2020 rates and
observe a linear correlation between the two.

county_rates <- tex_itop %>%
dplyr::select(c(county, total_rate, year)) %>%
filter(!(county %in% c("Terrell", "Loving")),
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year %in% c(2020, 2021)) %>%
pivot_wider(names_from = year, values_from = total_rate) %>%
na.omit() %>%
rename("y2020" = "2020", "y2021" = "2021")

head(county_rates)
#> # A tibble: 6 x 3
#> county y2020 y2021
#> <chr> <dbl> <dbl>
#> 1 Anderson 6.84 5.07
#> 2 Andrews 1.85 0.792
#> 3 Angelina 5.81 6.00
#> 4 Aransas 3.44 7.18
#> 5 Archer 1.47 0.733
#> 6 Armstrong 0 0

ggplot(county_rates) +
geom_point(aes(x = y2020, y = y2021)) +
labs(x = "2020 ITOP Rates", y ="2021 ITOP Rates")
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We have seen before how to calculate the correlation between two columns
using the cor() function. We can also calculate the covariance using the cov()
function. As suspected, there is a positive correlation. The estimated covari-
ance is around 5.2.
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cor(county_rates$y2020, county_rates$y2021)
#> [1] 0.5
cov(county_rates$y2020, county_rates$y2021)
#> [1] 5.2

Besides calculating the value of the correlation, we can also test whether
this correlation is significantly different from zero. The function cor.test()
tests for association between paired samples, using either Pearson’s product
moment correlation coefficient, Kendall’s 𝜏 , or Spearman’s 𝜌. Similar to the
t.test() and wilcox.test() functions, we can also specify the alternative
and conf.level arguments. In the following code, we test whether there is
a non-zero correlation between the 2020 and 2021 county rates using Pear-
son’s product-moment correlation. We can see from the resulting p-value that
we can reject the null hypothesis that the correlation is zero and conclude
that it is instead significantly different than zero. This time we also print the
computed confidence interval for our estimate.

cor_test_res <- cor.test(county_rates$y2020,
county_rates$y2021,
method = "pearson")

cor_test_res
#>
#> Pearson's product-moment correlation
#>
#> data: county_rates$y2020 and county_rates$y2021
#> t = 9, df = 250, p-value <2e-16
#> alternative hypothesis: true correlation is not equal to 0
#> 95 percent confidence interval:
#> 0.401 0.587
#> sample estimates:
#> cor
#> 0.5

cor_test_res$conf.int
#> [1] 0.401 0.587
#> attr(,"conf.level")
#> [1] 0.95
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11.3 Two-Sample Tests for Continuous Variables
If we wanted to directly compare the difference between 2020 and 2021 rates,
we could use a two-sample test. In this case, because our samples are paired
by county, we can use a two-sample paired t-test. Specifically, we use a two-
sided test to test the null hypothesis that the rates are equal by specifying two
different vectors x and y. Note that we used the default values of mu = 0 and
alternative = "two.sided". Additionally, we used the default value var.equal
= FALSE, which implies that the samples may have different variances. From
the results, we reject the null hypothesis that the two county rates are equal
at the 0.05 level. We also print a 95% confidence interval of the difference in
means.

t_test_two_res <- t.test(x = county_rates$y2020,
y = county_rates$y2021)

t_test_two_res
#>
#> Welch Two Sample t-test
#>
#> data: county_rates$y2020 and county_rates$y2021
#> t = 2, df = 497, p-value = 0.01
#> alternative hypothesis: true difference in means is not equal to 0
#> 95 percent confidence interval:
#> 0.145 1.278
#> sample estimates:
#> mean of x mean of y
#> 5.28 4.57
t_test_two_res$conf.int
#> [1] 0.145 1.278
#> attr(,"conf.level")
#> [1] 0.95

In the tex_itop dataset, each county has also been categorized by whether
it was urban or rural. Suppose we want to compare the change in abortion
rates from 2020 to 2021 between rural and urban counties. First, we create
a variable describing the rate change between these years using the following
code. We choose to use the change in rate rather than percent change to avoid
infinite or undefined values.

county_rates_type <- tex_itop %>%
dplyr::select(c(county, urban, county_type, total_rate, year)) %>%
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filter(total_rate < 15, year %in% c(2020, 2021)) %>%
pivot_wider(names_from = year, values_from = total_rate) %>%
na.omit() %>%
rename("y2020" = "2020", "y2021" = "2021") %>%
mutate(rate_change = (y2021 - y2020))

We again use a two-sample two-sided t-test, but this time the data are not
paired. In the following code, we show an alternative way to specify a t-test
using a formula lhs ~ rhs, where lhs is a numeric column and rhs is a factor
column with two levels. We must also specify the data in this case. From the
R output in this case, we would fail to reject the null hypothesis at the 0.05
level and conclude that the rate changes for urban and rural counties are not
significantly different. We also print the estimates used in the t-test using
estimate, which shows the estimated mean in both groups.

t_test_unpaired <- t.test(rate_change ~ urban,
data = county_rates_type)

t_test_unpaired
#>
#> Welch Two Sample t-test
#>
#> data: rate_change by urban
#> t = 0.1, df = 205, p-value = 0.9
#> alternative hypothesis: true difference in means between group

Rural and group Urban is not equal to 0↪

#> 95 percent confidence interval:
#> -0.495 0.563
#> sample estimates:
#> mean in group Rural mean in group Urban
#> -0.469 -0.503
t_test_unpaired$estimate
#> mean in group Rural mean in group Urban
#> -0.469 -0.503

Note that this yields the same results as if we had specified the data using
two vectors x and y.

x <- county_rates_type$rate_change[county_rates_type$urban == 'Urban']
y <- county_rates_type$rate_change[county_rates_type$urban == 'Rural']
t.test(x = x, y = y, paired = FALSE)
#>
#> Welch Two Sample t-test
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#>
#> data: x and y
#> t = -0.1, df = 205, p-value = 0.9
#> alternative hypothesis: true difference in means is not equal to 0
#> 95 percent confidence interval:
#> -0.563 0.495
#> sample estimates:
#> mean of x mean of y
#> -0.503 -0.469

Besides a t-test, we can also use a two-sample Wilcoxon non-parametric test
using the wilcox.test() function, which has the same arguments as the func-
tion t.test(). Both the t.test() and wilcox.test() can only compare two
groups. When we want to compare two or more independent samples, we can
use a Kruskal-Wallis rank sum test using the kruskal.test() function or a
one-way analysis of variance (ANOVA) using the aov() function.

This time we use the column county_type, which is an indicator for whether
the county is urban, suburban, or rural according to the RUCC (rural-
urban continuum codes) from the U.S. Department of Agriculture. For
the kruskal.test() function, we can either specify the arguments formula
(rate_change ~ county_type) and data (county_rates_type) or we can specify
two vectors: x, a numeric vector, and g, a factor representing the group. For
the aov() function, we specify the test using a formula and the data. To see
the p-value, we have to use the summary() function to print the result. Again,
both tests suggest that we fail to reject the null hypothesis at the 0.05 level.

kruskal.test(county_rates_type$rate_change,
county_rates_type$county_type)

#>
#> Kruskal-Wallis rank sum test
#>
#> data: county_rates_type$rate_change and

county_rates_type$county_type↪

#> Kruskal-Wallis chi-squared = 2, df = 2, p-value = 0.3

aov_res <- aov(rate_change ~ county_type,
data = county_rates_type)

summary(aov_res)
#> Df Sum Sq Mean Sq F value Pr(>F)
#> county_type 2 7 3.36 0.53 0.59
#> Residuals 245 1547 6.31
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11.3.1 Practice Question
Use an appropriate test to determine whether the ITOP rates in 2016 signif-
icantly differed by race. The test statistic should be 263.53 with associated
p-value < 2.2e-16.

# Insert your solution here:

11.3.2 Two-Sample Variance Tests
We could also test whether the variance of a continuous variable is equal
between groups. To start, we compare the variance in abortion rates in 2021
between urban and rural counties using an F-test. Our null hypothesis for this
test is that the variance in both groups is equal. The function var.test() im-
plements an F-test and has the same main arguments as the t.test() function:
vectors x and y OR a formula and data, the alternative hypothesis alterna-
tive, and conf.level. Additionally, we can specify the hypothesized ratio of
the variances through the argument ratio (default value 1). Note that this
function assumes that the two samples come from normally distributed pop-
ulations. We fail to reject the null hypothesis that the variances in rates are
equal at the 0.05 level and print the estimate of the ratio of variances, which
is around 1.11.

f_test <- var.test(y2021 ~ urban, county_rates_type)
f_test
#>
#> F test to compare two variances
#>
#> data: y2021 by urban
#> F = 1, num df = 187, denom df = 59, p-value = 0.6
#> alternative hypothesis: true ratio of variances is not equal to 1
#> 95 percent confidence interval:
#> 0.719 1.657
#> sample estimates:
#> ratio of variances
#> 1.12
f_test$estimate
#> ratio of variances
#> 1.12

Lastly, we implement a Levene’s test to test whether group variances are
equal when there are more than two groups. This test can be specified using
a formula and dataset, as demonstrated, or by providing two vectors y, a
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numeric vector, and g, a vector specifying the groups. This test is from the
car package and has slightly different output than other tests. In particular,
to access the p-value, we need to access the value named 'Pr(>F)'. In this
case, we actually do reject the null hypothesis at the 0.05 level.

levene_test <- leveneTest(y2021 ~ as.factor(county_type),
county_rates_type)

print(levene_test)
#> Levene's Test for Homogeneity of Variance (center = median)
#> Df F value Pr(>F)
#> group 2 3.41 0.034 *
#> 245
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
levene_test[['Pr(>F)']]
#> [1] 0.0345 NA

11.4 Two-Sample Tests for Categorical Variables
In the previous two-sample tests, we were comparing the distributions of con-
tinuous variables. We now look at comparing distributions of categorical vari-
ables. We first categorize counties by their abortion rate in 2020 being above
or below 11.2, which was the national average rate that year. We display the
distribution of this variable by the urban/rural grouping using a contingency
table below.

county_rates_type$below_nat_avg <-
ifelse(county_rates_type$y2020 > 11.2, "Above Nat Avg",

"Below Nat Avg")
table(county_rates_type$below_nat_avg, county_rates_type$urban)
#>
#> Rural Urban
#> Above Nat Avg 3 4
#> Below Nat Avg 185 56

We can use a Fisher’s exact test to test whether the classifications of being
above and below the national average and being rural and urban are associated
with each other. In this case, the null hypothesis is that the odds of being
below the national average is equal between rural and urban counties. The
fisher.test() function can either take in a contingency table as a matrix or
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can be specified by two factor vectors x and y, which is how we implement it in
the following code. Additionally, there is the option to specify the alternative
and conf.level arguments. We do not see a statistically significant difference
between urban and rural counties at the 0.05 level with the estimated odds
ratio being around 0.23.

fisher_test <- fisher.test(county_rates_type$urban,
county_rates_type$below_nat_avg)

fisher_test
#>
#> Fisher's Exact Test for Count Data
#>
#> data: county_rates_type$urban and county_rates_type$below_nat_avg
#> p-value = 0.06
#> alternative hypothesis: true odds ratio is not equal to 1
#> 95 percent confidence interval:
#> 0.0325 1.3955
#> sample estimates:
#> odds ratio
#> 0.229
fisher_test$estimate
#> odds ratio
#> 0.229

An alternative test is a Pearson’s Chi-Squared test, which can be used for
large sample sizes. The counts of rural and urban counties in the ‘Above Nat
Avg’ category are very small, so we re-categorize our outcome to be at or
above Texas’s average to avoid this complication. The chisq.test() function
also takes in a contingency table as a matrix or can be specified by two factor
vectors x and y. Another useful argument is correct (default is TRUE) which
indicates whether to apply a continuity correction. For this test, we observe a
statistically significant difference in the proportion of counties above the na-
tional average between rural and urban counties and reject the null hypothesis
at the 0.05 level.

tex_mean <- mean(county_rates_type$y2020)
county_rates_type$below_tex_avg <-
ifelse(county_rates_type$y2020 > tex_mean, "Above Texas Ave",

"Below Texas Ave")
table(county_rates_type$below_tex_avg, county_rates_type$urban)
#>
#> Rural Urban
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#> Above Texas Ave 84 39
#> Below Texas Ave 104 21

chi_sq <- chisq.test(county_rates_type$below_tex_avg,
county_rates_type$urban)

chi_sq
#>
#> Pearson's Chi-squared test with Yates' continuity correction
#>
#> data: county_rates_type$below_tex_avg and county_rates_type$urban
#> X-squared = 7, df = 1, p-value = 0.01
chi_sq$p.value
#> [1] 0.00953

11.4.1 Practice Question
Repeat the Chi-Squared test, but this time use the RUCC codes instead of the
urban column. You should get a p-value of 0.2799. Think about what could
explain the difference between these results.

# Insert your solution here:

11.5 Adding Hypothesis Tests to Summary Tables
In Chapter 4, we used the gt and gtsummary packages to create summary
tables of variables. When creating a stratified table (done by adding the by
argument), we can automatically add p-values for hypothesis tests compar-
ing across populations using the add_p() function. By default, the add_p()
function uses a Kruskal-Wallis rank sum test for continuous variables (or a
Wilcoxon rank sum test when the by variable has two levels) and uses a Chi-
Squared Contingency Table Test for categorical variables (or a Fisher’s Exact
Test for categorical variables with any expected cell count less than five). The
chosen tests are displayed as footnotes.

tbl_summary(tex_itop,
by = "year",
include = c(total_rate, white_rate, asian_rate,
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hispanic_rate, black_rate,
native_american_rate),

label = list(
total_rate = "Overall",
white_rate = "White",
asian_rate = "Asian",
hispanic_rate = "Hispanic",
black_rate = "Black",
native_american_rate = "Native American"),

statistic = list(all_continuous() ~ "{mean} ({sd})")) %>%
add_p() %>%
modify_header(label = "**Variable**") %>%
as_gt() %>%
cols_width(label ~ "50pt",

everything() ~ "30pt")

Variable 2016,
N =
2541

2017,
N =
2541

2018,
N =
2541

2019,
N =
2541

2020,
N =
2541

2021,
N =
2541

p-
value2

Overall 4.8
(3.0)

4.9
(4.9)

5.3
(4.2)

4.9
(3.3)

6.2
(14.1)

5.2
(7.9)

0.2

White 4.7
(3.8)

5.1
(5.8)

5.4
(6.0)

5.1
(5.1)

6.8
(21.3)

5.5
(8.0)

0.3

Asian 7 (32) 12
(46)

8 (21) 7 (20) 14
(55)

7 (37) 0.066

Hispanic 3.9
(3.7)

4.7
(6.3)

4.6
(4.6)

4.6
(5.0)

4.6
(5.8)

4.4
(4.8)

0.7

Black 9 (21) 13
(65)

26
(153)

20
(80)

25
(111)

26
(121)

0.13

Native
American

5.0
(24.0)

9.3
(65.0)

4.9
(17.8)

2.3
(12.4)

4.1
(21.1)

2.5
(10.1)

0.13

1Mean (SD)
2Kruskal-Wallis rank sum test

We observe that a Kruskal-Wallis rank sum test was used to compare abortion
rates across year for each racial group. All of the reported p-values are above
0.05, so overall it indicates that there were not statistically significant changes
across years in the abortion rate.
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11.6 Exercises
For the following exercises, we use the pain data from the HDSinRdata
package.

data(pain)

1. Determine whether the presence or absence of follow-up informa-
tion is significantly associated with the initial average pain intensity.
What do the results suggest?

2. First, plot PROMIS_PAIN_BEHAVIOR grouped by race (you can use the
PAT_RACE_CAT variable that we defined in Chapter 8). What do you
observe? Next, choose an appropriate test to determine whether this
variable differs significantly by race.
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3. Examine the association between CCI_BIN and MEDICAID_BIN. Are
these variables significantly related to each other? How would you
describe their relationship?

4. Recreate the summary table in Figure 11.1. Then, recreate the p-
values for PROMIS_DEPRESSION, PROMIS_ANXIETY, and MEDICAID_BIN us-
ing the appropriate tests.

Figure 11.1: Stratified Summary Table.
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Case Study: Analyzing Blood Lead Level and
Hypertension

For this chapter, we use the NHANESsample dataset seen in Chapter 4. The
sample contains lead, blood pressure, BMI, smoking status, alcohol use, and
demographic variables from NHANES 1999-2018. Variable selection and fea-
ture engineering were conducted to replicate the pre-processing conducted by
Huang (2022). We further replicate the regression analysis by Huang (2022)
in Chapter 13. Use the help operator ?NHANESsample to read the variable de-
scriptions. Note that we ignore survey weights for this analysis.

library(HDSinRdata)
library(tidyverse)
library(gt)
library(gtsummary)

data("NHANESsample")

Our analysis focuses on using hypothesis testing to look at the association
between hypertension and blood lead levels by sex. We first select some de-
mographic and clinical variables that we believe may be relevant, including
age, sex, race, body mass index, and smoking status. We do a complete case
analysis and drop any observations with missing data.

NHANESsample <- NHANESsample %>%
select("AGE", "SEX", "RACE", "SMOKE", "LEAD", "BMI_CAT",

"HYP", "ALC") %>%
na.omit()

We begin with a summary table stratified by hypertension status. As expected,
we see statistically significant differences between the two groups across all
included variables. We also observe higher blood lead levels and a higher
proportion of male participants for those with hypertension.

189
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tbl_summary(NHANESsample, by = c("HYP"),
label = list(SMOKE ~ "SMOKING STATUS",

BMI_CAT ~ "BMI",
ALC ~ "ALCOHOL USE")) %>%

add_p() %>%
add_overall() %>%
modify_spanning_header(c("stat_1", "stat_2") ~

"**Hypertension Status**") %>%
as_gt() %>%
cols_width(everything() ~ "55pt")

Hypertension Status
CharacteristicOverall, N

= 30,4251
0, N =
13,7351

1, N =
16,6901

p-value2

AGE 48 (34, 63) 37 (28, 50) 57 (44, 69) <0.001
SEX <0.001
    Male 16,031

(53%)
6,410 (47%) 9,621 (58%)

    Female 14,394
(47%)

7,325 (53%) 7,069 (42%)

RACE <0.001
    Mexican
American

5,184 (17%) 2,725 (20%) 2,459 (15%)

    Other
Hispanic

2,207 (7.3%) 1,145 (8.3%) 1,062 (6.4%)

    Non-
Hispanic
White

15,108
(50%)

6,750 (49%) 8,358 (50%)

    Non-
Hispanic
Black

5,853 (19%) 2,077 (15%) 3,776 (23%)

    Other
Race

2,073 (6.8%) 1,038 (7.6%) 1,035 (6.2%)

SMOKING
STATUS

<0.001

    NeverSmoke 14,682
(48%)

7,210 (52%) 7,472 (45%)

    QuitSmoke8,566 (28%) 2,990 (22%) 5,576 (33%)
    StillSmoke7,177 (24%) 3,535 (26%) 3,642 (22%)
LEAD 1.39 (0.85,

2.20)
1.14 (0.71,

1.85)
1.59 (1.00,

2.48)
<0.001

BMI <0.001
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    BMI<=259,007 (30%) 5,313 (39%) 3,694 (22%)
    25<BMI<30 10,456

(34%)
4,718 (34%) 5,738 (34%)

    BMI>=30 10,962
(36%)

3,704 (27%) 7,258 (43%)

ALCOHOL
USE

24,174
(79%)

11,624
(85%)

12,550
(75%)

<0.001

1Median (IQR); n (%)
2Wilcoxon rank sum test; Pearson’s Chi-squared test

We also plot the distribution of blood lead levels (on a log scale) by sex and
hypertension status. We can visually see that male observations tend to have
higher blood lead levels and that having hypertension is associated with higher
blood lead levels.

ggplot(NHANESsample) +
geom_boxplot(aes(x=LEAD,

y = interaction(HYP,SEX),
color = interaction(HYP,SEX))) +

scale_x_continuous(trans = "log", breaks = c(0.1, 1, 10, 50)) +
scale_y_discrete(labels = c("Male : 0", "Male : 1",

"Female : 0", "Female : 1")) +
guides(color = "none") +
labs(x="Blood Lead Level",

y = "Sex : Hypertension Status")
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Female : 1
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Blood Lead Level

S
ex

 : 
H

yp
er

te
ns

io
n 

S
ta

tu
s



192 12 Case Study: Analyzing Blood Lead Level and Hypertension

In Chapter 10, we explored that log blood lead levels could be approximated
by a normal distribution. To test our hypothesis that there is a difference in
mean log blood lead level between those with and without hypertension, we use
a two-sample unpaired t-test. This shows a statistically significant difference
between the two groups at the 0.05 level.

t.test(log(LEAD) ~ HYP, data = NHANESsample)
#>
#> Welch Two Sample t-test
#>
#> data: log(LEAD) by HYP
#> t = -37, df = 28853, p-value <2e-16
#> alternative hypothesis: true difference in means between group 0

and group 1 is not equal to 0↪

#> 95 percent confidence interval:
#> -0.314 -0.282
#> sample estimates:
#> mean in group 0 mean in group 1
#> 0.161 0.459

Finally, we repeat this test for a stratified analysis and present the results in
a concise table. For both groups, we find a statistically significant difference
at the 0.05 level.

# stratify the data
nhanes_male <- NHANESsample[NHANESsample$SEX == "Male",]
nhanes_female <- NHANESsample[NHANESsample$SEX == "Female",]

# t-test for each
test_male <- t.test(log(LEAD) ~ HYP, data = nhanes_male)
test_female <- t.test(log(LEAD) ~ HYP, data = nhanes_female)

# create data frame
res_df <- data.frame(group = c("Male", "Female"),

statistic = signif(c(test_male$statistic,
test_female$statistic), 3),

p.value = signif(c(test_male$p.value,
test_female$p.value), 3))

res_df
#> group statistic p.value
#> 1 Male -14.7 1.84e-48
#> 2 Female -32.3 4.35e-221

In Chapter 13, we use linear regression to further explore the association
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between blood lead level and hypertension adjusting for other potential con-
founders.





Part IV

Regression





13
Linear Regression

This chapter introduces you to linear regression analysis in R. We cover how to
fit linear regression models, check model assumptions using diagnostic plots,
change model formulas by adding transformations and interactions, calculate
performance metrics, and perform variable selection using stepwise selection.

For this chapter, we use the NHANESsample dataset seen in Chapter 4. The sam-
ple contains lead, blood pressure, BMI, smoking status, alcohol use, and de-
mographic variables from NHANES 1999-2018. Variable selection and feature
engineering were conducted in an effort to replicate the regression analyses
conducted by Huang (2022). Use the help operator ?NHANESsample to read the
variable descriptions. Note that we ignore survey weights for this analysis.

We use the broom package (Robinson, Hayes, and Couch 2023) to present
the estimated coefficients for our regression models and the car package to
compute variance inflation factors.

library(HDSinRdata)
library(tidyverse)
library(broom)
library(car)

data(NHANESsample)

13.1 Simple Linear Regression
In Chapter 4, we presented some initial exploratory analysis for this data.
In this chapter, we use linear regression to understand the association be-
tween blood lead levels and systolic blood pressure, adjusting for possible
confounders. Replicating the analysis of Huang (2022), we create summary
columns for systolic and diastolic blood pressure. If an observation has one
blood pressure reading, then we use that value. If there is more than one blood
pressure reading, then we drop the first observation and average the rest. We

197
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do a complete case analysis by dropping any observation with NA values. This
leaves us with 30,405 observations.

NHANESsample$SBP <- apply(NHANESsample[,c("SBP1", "SBP2", "SBP3",
"SBP4")], 1,

function(x) case_when(sum(!is.na(x)) == 0 ~ NA,
sum(!is.na(x)) == 1 ~ sum(x, na.rm = TRUE),
sum(!is.na(x)) > 1 ~ mean(x[-1],

na.rm = TRUE)))
NHANESsample$DBP <- apply(NHANESsample[,c("DBP1", "DBP2", "DBP3",

"DBP4")], 1,
function(x) case_when(sum(!is.na(x)) == 0 ~ NA,

sum(!is.na(x)) == 1 ~ sum(x, na.rm = TRUE),
sum(!is.na(x)) > 1 ~ mean(x[-1],

na.rm = TRUE)))
nhanes_df <- na.omit(subset(NHANESsample,

select= -c(SBP1, SBP2, SBP3, SBP4, DBP1,
DBP2, DBP3, DBP4)))

dim(nhanes_df)
#> [1] 30405 15

Next, we make sure any categorical variables are coded as factors.

nhanes_df$SEX <- as.factor(nhanes_df$SEX)
nhanes_df$RACE <- as.factor(nhanes_df$RACE)
nhanes_df$EDUCATION <- as.factor(nhanes_df$EDUCATION)
nhanes_df$BMI_CAT <- as.factor(nhanes_df$BMI_CAT)
nhanes_df$LEAD_QUANTILE <- as.factor(nhanes_df$LEAD_QUANTILE)

We start with simple linear regression. In the following code, we plot the
relationship between blood lead level and systolic blood pressure. For a simple
linear regression scenario with a single continuous independent variable, a
scatter plot allows us to easily visualize whether we meet the assumptions
underlying linear regression. The survey sampling for the NHANES survey
allows us to assume that each observation is independent. If we meet the
assumptions of linear regression, we also expect the plot to show that the
average systolic blood pressure increases linearly with blood lead level and
that the observations look normally distributed with equal variance along
that line. We do not observe that to be the case. We come back to this in the
section on transformations and interactions.

plot(nhanes_df$LEAD, nhanes_df$SBP,
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xlab = "Blood Lead Level", ylab = "Systolic Blood Pressure",
pch = 16)
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Despite our observations, we continue by fitting a simple linear regres-
sion model to explain the association between SBP and LEAD. The function
lm(formula = y ~ x, data) fits a linear model in R. The first argument is
the formula of the linear model: on the left-hand side of the ~ we put the
outcome variable, and on the right-hand side we put the independent variable.
When we have multiple independent variables, we separate them with a + (e.g.,
y~x1+x2). The output of this function is an lm object.

We can call the summary() function on this object to print a summary of
the model, which includes the estimated coefficients, information about the
residuals, the R-squared and adjusted R-squared values, and the F-statistic.
Recall, that we previously used the summary() function to get summary statis-
tics about a vector. This is an example of how multiple functions can have
the same name. R figures out which summary() function to use by identifying
that the argument we passed in is a lm object.

simp_model <- lm(formula = SBP ~ LEAD, data = nhanes_df)
summary(simp_model)
#>
#> Call:
#> lm(formula = SBP ~ LEAD, data = nhanes_df)
#>
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#> Residuals:
#> Min 1Q Median 3Q Max
#> -96.36 -12.52 -2.79 9.36 140.88
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 120.665 0.149 807.1 <2e-16 ***
#> LEAD 1.708 0.058 29.4 <2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 18.5 on 30403 degrees of freedom
#> Multiple R-squared: 0.0277, Adjusted R-squared: 0.0277
#> F-statistic: 867 on 1 and 30403 DF, p-value: <2e-16

To visualize this model, we can add the estimated regression line to our scatter
plot. In ggplot2, this can be done with the geom_smooth() function. In base
R, we use the abline() function, which can take in a regression model as an
input. We can see that the estimated regression line does not fit our data very
well.

plot(nhanes_df$LEAD, nhanes_df$SBP,
ylab = c("Systolic Blood Pressure"),
xlab = c("Blood Lead Level"), pch = 16)

abline(simp_model, col = 2, lwd = 2)
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13.1.1 Practice Question
Fit a simple linear regression model with SBP as the outcome and AGE as the in-
dependent variable. The estimated coefficient for AGE should be 0.47693. Then,
plot these two variables against each other and add the estimated regression
line to the plot, as we did previously. You should see that this regression has
a better fit than the previous one.

# Insert your solution here:

13.2 Multiple Linear Regression
We now create a model that is similar to the previous one except that it also
adjusts for age and sex. To add these variables into the model, we have to
specify a new formula. In the following code chunk, we fit this model and then
print a summary, again using the summary() function.

adj_model <- lm(SBP ~ LEAD + AGE + SEX, data = nhanes_df)
summary(adj_model)
#>
#> Call:
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#> lm(formula = SBP ~ LEAD + AGE + SEX, data = nhanes_df)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -65.62 -10.59 -1.55 8.55 131.60
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 101.78541 0.30353 335.34 < 2e-16 ***
#> LEAD 0.40007 0.05525 7.24 4.5e-13 ***
#> AGE 0.46193 0.00557 82.97 < 2e-16 ***
#> SEXFemale -2.77774 0.19567 -14.20 < 2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 16.6 on 30401 degrees of freedom
#> Multiple R-squared: 0.212, Adjusted R-squared: 0.212
#> F-statistic: 2.72e+03 on 3 and 30401 DF, p-value: <2e-16

We can also extract the estimated regression coefficients from the model using
the coef() function or by using the tidy() function from the broom package.
This function puts the coefficient estimates, standard errors, statistics, and
p-values in a data frame. We can also add a confidence interval by specifying
conf.int = TRUE. In our example, we add a 95% confidence interval (which is
the default value for conf.level).

coef(adj_model)
#> (Intercept) LEAD AGE SEXFemale
#> 101.785 0.400 0.462 -2.778

tidy(adj_model, conf.int = TRUE, conf.level = 0.95)
#> # A tibble: 4 x 7
#> term estimate std.error statistic p.value conf.low

conf.high↪

#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 (Intercept) 102. 0.304 335. 0 101. 102.
#> 2 LEAD 0.400 0.0552 7.24 4.54e-13 0.292 0.508
#> 3 AGE 0.462 0.00557 83.0 0 0.451 0.473
#> 4 SEXFemale -2.78 0.196 -14.2 1.36e-45 -3.16 -2.39

Some other useful summary functions are resid(), which returns the resid-
ual values for the model, and fitted(), which returns the fitted values or
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estimated y values. We can also predict on new data using the predict() func-
tion. In the following plot, we look at the distribution of the residual values
and then plot the fitted vs. true values. We observe some extreme residual val-
ues as well as the fact that the absolute residual values increase with increased
blood pressure values.

summary(resid(adj_model))
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> -65.6 -10.6 -1.6 0.0 8.5 131.6

plot(nhanes_df$SBP, fitted(adj_model),
xlab = "True Systolic Blood Pressure",
ylab = "Predicted Systolic Blood Pressure", pch = 16)

abline(a = 0, b = 1, col = "red", lwd = 2)
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We can next perform a nested hypothesis test between our simple linear regre-
sion model and our adjusted model using the anova() function. We pass both
models to this function along with the argument test="F" to indicate that we
are performing an F-test. The print() function shows the two tested models
along with the associated p-value, which indicates a significantly better fit for
the adjusted model.

print(anova(simp_model, adj_model, test= "F"))
#> Analysis of Variance Table
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#>
#> Model 1: SBP ~ LEAD
#> Model 2: SBP ~ LEAD + AGE + SEX
#> Res.Df RSS Df Sum of Sq F Pr(>F)
#> 1 30403 10375769
#> 2 30401 8413303 2 1962467 3546 <2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The model summary for the adjusted model displays the estimated coefficient
for sex as SEXFemale, which indicates that the reference level for sex is male.
If we want to change our reference level, we can reorder the factor variable
either by using the factor() function and specifying Female as the first level or
by using the relevel() function. The ref argument in the relevel() function
specifies the new reference level. Now, when we run the model, we can see
that the estimated coefficient for sex is labeled as SEXMale.

nhanes_df$SEX <- relevel(nhanes_df$SEX, ref = "Female")
adj_model2 <- lm(SBP ~ LEAD + AGE + SEX, data = nhanes_df)
tidy(adj_model2)
#> # A tibble: 4 x 5
#> term estimate std.error statistic p.value
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 (Intercept) 99.0 0.293 338. 0
#> 2 LEAD 0.400 0.0552 7.24 4.54e-13
#> 3 AGE 0.462 0.00557 83.0 0
#> 4 SEXMale 2.78 0.196 14.2 1.36e-45

The formula passed to the lm() function also allows us to use the . to indicate
that we would like to include all remaining columns as independent variables
or the - to exclude variables. In the following code chunk, we show how we
could use these to fit a model with LEAD, AGE, and SEX as included covariates
by excluding all other variables instead of by specifying these three variables
themselves.

lm(SBP ~ . - ID - RACE - EDUCATION - INCOME - SMOKE - YEAR - BMI_CAT -
LEAD_QUANTILE - DBP - ALC - HYP - RACE, data = nhanes_df)

#>
#> Call:
#> lm(formula = SBP ~ . - ID - RACE - EDUCATION - INCOME - SMOKE -
#> YEAR - BMI_CAT - LEAD_QUANTILE - DBP - ALC - HYP - RACE,
#> data = nhanes_df)
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#>
#> Coefficients:
#> (Intercept) AGE SEXMale LEAD
#> 99.008 0.462 2.778 0.400

13.3 Diagnostic Plots and Measures
We can tell from the previous plot that our model doesn’t have a great fit.
We use some further diagnostic plots and measures to learn more. R has some
built-in plots available for linear regression models, which can be displayed
using the plot() function. Similar the summary() function, this function acts
differently when passed an lm object. The four plots include (a) Residuals
vs. Fitted, (b) a QQ-plot for the residuals, (c) Standardized residuals (sqrt)
vs. Fitted, and (d) Standardized Residuals vs. Leverage. In the last plot, you
may observe that there is a dashed line. Any points outside of these lines have
a Cook’s distance of greater than 0.5. Additionally, points with labels corre-
spond to the points with the largest residuals, so this last plot summarizes the
outliers, leverage, and influential points. The plots show that our residuals do
not look normally distributed and that we have may have some high leverage
points.

par(mfrow = c(2, 2)) # plots all four plots together
plot(adj_model)
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13.3.1 Normality
Beyond the default plots, we can also plot a histogram of the residuals and a
qq-plot. The qqnorm() and qqline() functions can take in the residuals from
our model as an argument. The latter adds the theoretical red line for reference.
As both the histogram and qq-plot show, the residuals are positively skewed,
and thus the assumption of normality is not satisfied for our residuals. Later
in this chapter, we discuss how we might transform this dataset and/or model
to satisfy this assumption.
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par(mfrow = c(1, 2)) # plot next to each other
hist(resid(adj_model), xlab = "Residuals",

main = "Histogram of Residuals")
qqnorm(resid(adj_model))
qqline(resid(adj_model), col = "red")
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Instead of using the direct residuals, we can also find the standardized resid-
uals with the function rstandard(). The standardized residuals are the raw
residuals divided by an estimate of the standard deviation for the residual,
which is different for each observation.

par(mfrow = c(1, 2))
hist(rstandard(adj_model), xlab = "Standardized Residuals",

main = "Histogram of Standardized Residuals",
cex.main = 0.65)

qqnorm(rstandard(adj_model), cex.main = 0.65)
qqline(rstandard(adj_model), col = "red")
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Histogram of Standardized Residuals
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13.3.2 Homoscedasticity, Linearity, and Collinearity
We can also create a residual vs. fitted plot or plot the residuals against in-
cluded covariates. In the following code, we plot the blood lead level against
the residuals. In both plots, we are looking for the points to be spread roughly
evenly around 0 with no discerning pattern. However, both plots show a fun-
nel shape, indicating a growing and shrinking variance of residuals by level,
respectively. This indicates that we are violating the homoscedasticity assump-
tion.

par(mfrow = c(1, 2))
plot(fitted(adj_model), resid(adj_model),

xlab = "Fitted Values", ylab = "Residuals")
plot(nhanes_df$LEAD, resid(adj_model),

xlab = "Blood Lead Level", ylab = "Residuals")
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To quantify any collinearity between the included covariates, we can calculate
the variance inflation factors. The vif() function in the car package allows
us to calculate the variance inflation factors or generalized variance inflation
factors for all covariates. In our case, all the VIF values are around 1, indicating
low levels of collinearity.

vif(adj_model)
#> LEAD AGE SEX
#> 1.12 1.07 1.05

13.3.3 Practice Question
Fit a linear regression model with SBP as the outcome and with INCOME, RACE,
EDUCATION, and ALC as independent variables. Then, plot the residuals vs. the
fitted values as well and make a QQ-plot for the standardized residuals from
this model. They should look like Figure 13.1.

# Insert your solution here:

13.3.4 Leverage and Influence
We may also be interested in how each observation is influencing the model.
Leverage values measure how much an individual observation’s 𝑦 value influ-
ences its own predicted value and indicate whether observations have extreme
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Figure 13.1: Residual Plots.

predictor values compared to the rest of the data. Leverage values range from
0 to 1 and sum to the number of estimated coefficients. Observations with
high leverage have the potential to significantly impact the estimated regres-
sion coefficients and the overall fit of the model. Therefore, examining leverage
values helps identify observations that may be influential or outliers. In the
following code chunk, we find the ten highest leverage values and then find
those observations in the data.

sort(hatvalues(adj_model), decreasing = TRUE)[1:10]
#> 23016 2511 3091 21891 3661 511 21892 15321

6511↪

#> 0.03899 0.02936 0.02270 0.01484 0.01443 0.01399 0.01159 0.01080
0.01022↪

#> 3452
#> 0.00968
nhanes_df[order(hatvalues(adj_model), decreasing = TRUE),] %>%
select(c(SBP, LEAD, AGE, SEX)) %>%
head(10)

#> SBP LEAD AGE SEX
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#> 23016 129 61.3 38 Male
#> 2511 139 54.0 61 Male
#> 3091 154 48.0 72 Male
#> 21891 123 38.9 54 Male
#> 3661 101 38.0 39 Male
#> 511 118 37.3 34 Male
#> 21892 107 33.7 21 Male
#> 15321 104 33.1 39 Male
#> 6511 175 33.0 71 Male
#> 3452 113 31.4 38 Male

Some other measures of influence are the DFBETAs and Cook’s distance,
which measure how much each observation influences the estimated coefficients
and the estimated y values, respectively. The influence.measures() function
provides a set of measures that quantify the influence of each observation on a
linear regression model: these include the DFBETAS for each model variable,
DFFITS, covariance ratios, Cook’s distances, and the leverage values. The
output returns the values in a matrix called infmat, which we convert to a
data frame.

inf_mat <- influence.measures(adj_model)[['infmat']]
as.data.frame(inf_mat) %>% head()
#> dfb.1_ dfb.LEAD dfb.AGE dfb.SEXF dffit cov.r cook.d
#> 1 0.013880 -0.017564 -1.68e-02 0.008319 -0.03427 1.000 2.93e-04
#> 2 -0.000732 0.000348 -3.92e-05 0.001051 -0.00150 1.000 5.59e-07
#> 3 0.022137 0.005749 -1.45e-02 -0.016843 0.02964 0.999 2.19e-04
#> 4 0.000499 0.001043 -2.07e-03 0.001631 -0.00312 1.000 2.43e-06
#> 5 0.002259 -0.002725 -2.50e-03 0.000973 -0.00498 1.000 6.20e-06
#> 6 -0.001283 -0.000559 1.65e-03 -0.002929 -0.00441 1.000 4.87e-06
#> hat
#> 1 1.90e-04
#> 2 6.61e-05
#> 3 8.28e-05
#> 4 1.18e-04
#> 5 2.35e-04
#> 6 8.09e-05
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13.4 Interactions and Transformations
We now try to improve our model. To start, we look at potential transfor-
mations for our outcome variable. We consider a log transformation for both
our outcome, systolic blood pressure, and our predictor of interest, blood lead
level. Both of these variables have a fairly skewed distribution and may ben-
efit from such a transformation. In the following code, you can see that the
transformed variables have distributions that are more symmetrical.

par(mfrow=c(2,2))
hist(nhanes_df$SBP, xlab = "Systolic Blood Pressure",

main = "")
hist(log(nhanes_df$SBP), xlab = "Log Systolic Blood Pressure",

main = "")
hist(nhanes_df$LEAD, xlab = "Blood Lead Level",

main = "")
hist(log(nhanes_df$LEAD), xlab = "Log Blood Lead Level",

main = "")
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To add a transformation to a model, we can simply apply the transformation
in the formula for lm(). We find the adjusted R-squared for each potential
model to compare their fits in addition to plotting the four qq-plots. Both
indicate that the model with the log-log transformation (that is, with a log
transformation applied to both the SBP and the LEAD variables) is the best fit,
though the model with just a log transformation for SBP has a similar qq-plot.

model_nlog_nlog <- lm(SBP ~ LEAD + AGE + SEX, data = nhanes_df)
model_log_nlog <- lm(log(SBP) ~ LEAD + AGE + SEX, data = nhanes_df)
model_nlog_log <- lm(SBP ~ log(LEAD) + AGE + SEX, data = nhanes_df)
model_log_log <- lm(log(SBP) ~ log(LEAD) + AGE + SEX,

data = nhanes_df)
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summary(model_nlog_nlog)$adj.r.squared
#> [1] 0.212
summary(model_log_nlog)$adj.r.squared
#> [1] 0.215
summary(model_nlog_log)$adj.r.squared
#> [1] 0.212
summary(model_log_log)$adj.r.squared
#> [1] 0.215

par(mfrow=c(2,2))
qqnorm(rstandard(model_nlog_nlog), main = "Original Model")
qqline(rstandard(model_nlog_nlog), col = "red")
qqnorm(rstandard(model_log_nlog), main = "Log SBP")
qqline(rstandard(model_log_nlog), col = "red")
qqnorm(rstandard(model_nlog_log), main = "Log Lead")
qqline(rstandard(model_nlog_log), col = "red")
qqnorm(rstandard(model_log_log), main = "Log SBP, Log Lead")
qqline(rstandard(model_log_log), col = "red")
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13.4.1 Practice Question
Instead of adding in a log transformation for LEAD like we did previously, try a
square root transformation sqrt(LEAD) and an inverse transformation 1/LEAD
while keeping the log transformation for the outcome log(SBP). Which model
fits better according to the adjusted R-squared? The resulting QQ-plots should
look like Figure 13.2.
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Figure 13.2: QQ-Plots for Possible Transformations.

# Insert your solution here:

Additionally, we might consider polynomial transformations. The poly(x, de-
gree=1) function allows us to specify a polynomial transformation where we
might have higher degree terms. We do not pursue this approach for this
particular example, but we show some example code for creating such a trans-
formation (in this case, a cubic transformation for blood lead level).

model_poly <- lm(SBP ~ poly(LEAD, 3) + AGE + SEX, data = nhanes_df)

We can summarize the outcome for our log-log model using the tidy() function
again. We observe small p-values for each estimated coefficient.

tidy(model_log_log)
#> # A tibble: 4 x 5
#> term estimate std.error statistic p.value
#> <chr> <dbl> <dbl> <dbl> <dbl>
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#> 1 (Intercept) 4.62 0.00239 1932. 0
#> 2 log(LEAD) 0.00891 0.00118 7.53 5.34e-14
#> 3 AGE 0.00349 0.0000457 76.4 0
#> 4 SEXMale 0.0254 0.00155 16.4 2.06e-60

Another component that we may want to add to our model is an interaction
term. For example, we may consider an interaction between sex and blood
lead level. We add an interaction to the formula using a : between the two
variables. The output shows that the coefficient for this interaction is indeed
significant.

model_interaction <- lm(log(SBP) ~ log(LEAD) + AGE + SEX +
SEX:log(LEAD), data=nhanes_df)

summary(model_interaction)
#>
#> Call:
#> lm(formula = log(SBP) ~ log(LEAD) + AGE + SEX + SEX:log(LEAD),
#> data = nhanes_df)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -0.6981 -0.0816 -0.0049 0.0752 0.6599
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 4.62e+00 2.39e-03 1936.2 <2e-16 ***
#> log(LEAD) 2.36e-02 1.68e-03 14.1 <2e-16 ***
#> AGE 3.45e-03 4.58e-05 75.3 <2e-16 ***
#> SEXMale 3.32e-02 1.67e-03 19.9 <2e-16 ***
#> log(LEAD):SEXMale -2.66e-02 2.16e-03 -12.3 <2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 0.128 on 30400 degrees of freedom
#> Multiple R-squared: 0.219, Adjusted R-squared: 0.219
#> F-statistic: 2.13e+03 on 4 and 30400 DF, p-value: <2e-16
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13.5 Evaluation Metrics
In addition to adjusted R-squared, there are a few other metrics that can help
us to understand how well our model fits the data and can also help with model
selection. The AIC() and BIC() functions find the Akaike information criterion
(AIC) and Bayesian information criterion (BIC) values, respectively. Both AIC
and BIC balance the trade-off between model complexity and goodness of fit.
AIC takes into account both the goodness of fit (captured by the likelihood
of the model) and the complexity of the model (captured by the number of
parameters used). Lower AIC values are preferable. BIC is similar to AIC but
has a stronger penalty for model complexity compared to AIC. Both measures
indicate a preference for keeping the interaction term.

AIC(model_log_log)
#> [1] -38610
AIC(model_interaction)
#> [1] -38760

BIC(model_log_log)
#> [1] -38569
BIC(model_interaction)
#> [1] -38710

The predict() function allows us to calculate the predicted y values. When
called on a model with no data specified, it returns the predicted values for
the training data. We could also specify new data using the newdata argument.
The new data provided must contain the columns given in the model formula.
We use the predict() function to find the predicted values from our model
and then calculate the mean absolute error (MAE) and mean squared error
(MSE) for our model. MAE is less sensitive to outliers compared to MSE. The
MAE indicates that our model has fairly high residuals on average. While
this model may be helpful for understanding the relationship between blood
lead level and systolic blood pressure, it would not be very useful as a tool to
predict the latter.

pred_y <- predict(model_interaction)

mae <- mean(abs(nhanes_df$SBP - pred_y))
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mae
#> [1] 119

mse <- mean((nhanes_df$SBP - pred_y)^2)
mse
#> [1] 14502

13.6 Stepwise Selection
So far we have ignored the other variables in the data frame. When performing
variable selection, there are multiple methods to use. We conclude this chapter
by demonstrating how to implement one such method, stepwise selection,
in R. Chapter 15 expands upon this model selection technique by showing
how to implement regularized models in R.

The step() function takes in an initial model along with a direction (“for-
ward”, “backward”, or “both”), and a scope. The scope specifies the lower
and upper model formulas to consider. In the following example, we use for-
ward selection so the lower formula is the formula for our current model, and
the upper formula contains the other covariates we are considering adding in.
These two formulas must be nested, that is, all terms in the lower formula
must be contained in the upper formula.

By default, the step() function prints each step in the process and uses AIC to
guide its decisions. We can set trace=0 to avoid the print behavior and update
the argument k to log(n) to use BIC, where n is the number of observations.
In the output, we see that the algorithm first adds in race, then BMI, then
income, then education, and then smoking status. In fact, all variables were
added to the model! The final output is an lm object that we can use just like
the ones earlier in this chapter. We get the summary of the final model and
see that the adjusted R-squared has improved to 0.2479.

lower_formula <- "log(SBP) ~ log(LEAD) + AGE + SEX:log(LEAD)"
upper_formula <- "log(SBP) ~ log(LEAD) + AGE + SEX:log(LEAD) + SEX +
RACE + EDUCATION + SMOKE + INCOME + BMI_CAT"

mod_step <- step(model_interaction, direction = 'forward',
scope = list(lower = lower_formula,

upper = upper_formula))
#> Start: AIC=-125048
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#> log(SBP) ~ log(LEAD) + AGE + SEX + SEX:log(LEAD)
#>
#> Df Sum of Sq RSS AIC
#> + RACE 4 9.16 488 -125605
#> + BMI_CAT 2 8.97 488 -125597
#> + INCOME 1 2.87 494 -125222
#> + EDUCATION 2 1.90 495 -125160
#> + SMOKE 2 0.35 497 -125065
#> <none> 497 -125048
#>
#> Step: AIC=-125605
#> log(SBP) ~ log(LEAD) + AGE + SEX + RACE + log(LEAD):SEX
#>
#> Df Sum of Sq RSS AIC
#> + BMI_CAT 2 7.16 481 -126050
#> + INCOME 1 1.80 486 -125715
#> + EDUCATION 2 1.34 487 -125684
#> + SMOKE 2 0.13 488 -125609
#> <none> 488 -125605
#>
#> Step: AIC=-126050
#> log(SBP) ~ log(LEAD) + AGE + SEX + RACE + BMI_CAT + log(LEAD):SEX
#>
#> Df Sum of Sq RSS AIC
#> + INCOME 1 1.617 479 -126151
#> + EDUCATION 2 1.112 480 -126117
#> + SMOKE 2 0.261 481 -126063
#> <none> 481 -126050
#>
#> Step: AIC=-126151
#> log(SBP) ~ log(LEAD) + AGE + SEX + RACE + BMI_CAT + INCOME +
#> log(LEAD):SEX
#>
#> Df Sum of Sq RSS AIC
#> + EDUCATION 2 0.418 479 -126173
#> + SMOKE 2 0.258 479 -126163
#> <none> 479 -126151
#>
#> Step: AIC=-126173
#> log(SBP) ~ log(LEAD) + AGE + SEX + RACE + BMI_CAT + INCOME +
#> EDUCATION + log(LEAD):SEX
#>
#> Df Sum of Sq RSS AIC
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#> + SMOKE 2 0.286 479 -126187
#> <none> 479 -126173
#>
#> Step: AIC=-126187
#> log(SBP) ~ log(LEAD) + AGE + SEX + RACE + BMI_CAT + INCOME +
#> EDUCATION + SMOKE + log(LEAD):SEX

summary(mod_step)
#>
#> Call:
#> lm(formula = log(SBP) ~ log(LEAD) + AGE + SEX + RACE + BMI_CAT +
#> INCOME + EDUCATION + SMOKE + log(LEAD):SEX, data = nhanes_df)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -0.6713 -0.0799 -0.0039 0.0738 0.6797
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 4.61e+00 3.32e-03 1391.51 < 2e-16 ***
#> log(LEAD) 2.28e-02 1.69e-03 13.47 < 2e-16 ***
#> AGE 3.48e-03 4.85e-05 71.87 < 2e-16 ***
#> SEXMale 3.47e-02 1.65e-03 20.94 < 2e-16 ***
#> RACEOther Hispanic -7.11e-03 3.22e-03 -2.20 0.027 *
#> RACENon-Hispanic White -4.45e-03 2.20e-03 -2.02 0.043 *
#> RACENon-Hispanic Black 3.37e-02 2.47e-03 13.66 < 2e-16 ***
#> RACEOther Race 6.27e-03 3.39e-03 1.85 0.064 .
#> BMI_CAT25<BMI<30 1.51e-02 1.84e-03 8.23 < 2e-16 ***
#> BMI_CATBMI>=30 3.78e-02 1.83e-03 20.62 < 2e-16 ***
#> INCOME -3.89e-03 5.00e-04 -7.78 7.6e-15 ***
#> EDUCATIONHS -1.94e-05 2.19e-03 -0.01 0.993
#> EDUCATIONMoreThanHS -8.69e-03 2.07e-03 -4.20 2.6e-05 ***
#> SMOKEQuitSmoke -7.56e-03 1.80e-03 -4.21 2.6e-05 ***
#> SMOKEStillSmoke -4.04e-03 1.94e-03 -2.08 0.038 *
#> log(LEAD):SEXMale -2.61e-02 2.12e-03 -12.28 < 2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 0.126 on 30389 degrees of freedom
#> Multiple R-squared: 0.248, Adjusted R-squared: 0.248
#> F-statistic: 669 on 15 and 30389 DF, p-value: <2e-16
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13.7 Exercises
For these exercises, we continue using the nhanes_df data.

1. Construct a linear model using DBP as the output and LEAD, AGE, and
EVER_SMOKE as features, and print the output.

2. Use forward stepwise selection to add possible interactions to the
linear model from the previous question.

3. Draw a QQ-plot for the model in Question 2, and describe the
distribution that you observe.

4. Report the MAE and MSE of the model developed in Question
2. Then, find the row numbers of the observations with the top 5
Cook’s Distance values for this model.

5. Look at some diagnostic plots for the model and use what you
observe from these plots to choose a transformation that improves
the fit of this model. Then, fit and summarize this new model with
the transformation included. How do the MSE and MAE of the new
model compare to the previous one? Note that your predictions will
be on the transformed scale, so you’ll need to convert them to the
correct scale.
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Logistic Regression

This chapter builds on the previous chapter and continues with regression
analysis in R. Specifically, we cover binary logistic regression using the glm()
function, which can be used to fit generalized linear models. Many of the
functions learned in the last chapter can also be used with a glm object. For
example, the glm() function expects a formula in the same way as the lm()
function. We also cover diagnostic plots and model evaluation specific to a
binary outcome.

The data used in this chapter is from the 2021 National Youth Tobacco Sur-
vey (NYTS) (Centers for Disease Control and Prevention (CDC) 2021). This
dataset contains 20,413 participants and a set of variables relating to demo-
graphic information, frequency of tobacco use, and methods of obtaining said
tobacco as reported by students on the 2021 NYTS. We use logistic regression
to examine whether survey setting is associated with youth reporting of cur-
rent tobacco use, similar to the analysis presented in Park-Lee et al. (2023).
Note that we ignore survey weights for this analysis.

We use the broom package again to present the estimated coefficients, the
tidyverse package to create a calibration plot, the lmtest (Hothorn et al.
2022) package to perform likelihood ratio tests, and the pROC package
(Robin et al. 2023) to create receiver operating characteristic curves.

library(broom)
library(tidyverse)
library(pROC)
library(lmtest)
library(HDSinRdata)

data(nyts)

223
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14.1 Generalized Linear Models in R
The glm(formula, data, family) function in R is used to fit generalized linear
models. The three main arguments we must specify to the function are:

• formula - the relationship between the independent variables and the
outcome of interest,

• data - the dataset used to train the model, and

• family - a description of the error distribution and link function to be used
in the model.

In binary logistic regression, we assume a binomial outcome and use the logit
link function. We can specify this by setting family = binomial. By default,
this assumes the link function is the logit function. Note that we can even
use the glm() function to implement linear regression by setting family =
gaussian. Using our example from Chapter 13, running glm(SBP ~ LEAD, data
= nhanes_df, family = gaussian) would be equivalent to lm(SBP ~ LEAD, data
= nhanes_df).

Our outcome of interest is current e-cigarette use, e_cig_use, so we need to
create this variable from the variables that are currently in the data. We
set e_cig_use to 0 if the respondent answered that they have not used e-
cigarettes in the last 30 days and 1 otherwise. We can see that there are only
1,435 respondents who reported e-cigarette use. This is a low percentage of
the overall sample, which will likely impact our results.

nyts$e_cig_use <- as.factor(ifelse(nyts$num_e_cigs == 0, "0", "1"))
table(nyts$e_cig_use)
#>
#> 0 1
#> 18683 1435

Looking at the covariate of interest, survey setting, we can see that there are 85
respondents who took the survey in “Some other place”. Since we are interested
in the impact of taking the survey at school compared to other settings, we
simplify this variable to have two levels: “school” and “home/other”.

table(nyts$location)
#>
#> At home (virtual learning) In a school building/classroom
#> 8738 10737
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#> Some other place
#> 85
nyts$location <- ifelse(nyts$location ==

"In a school building/classroom",
"school", "home/other")

nyts$location <- as.factor(nyts$location)

To start, we create a model to predict e-cigarette use from school setting ad-
justing for the covariates sex, school level, race, and ethnicity. Note that we
specify our formula and data as with the lm() function. We then use the sum-
mary() function again to print a summary of this fitted model. The output is
slightly different from an lm object. We can see the null and residual deviances
are reported along with the AIC. Adding transformations and interactions is
equivalent to that in the lm() function and is not demonstrated in this chapter.

mod_start <- glm(e_cig_use ~ grade + sex + race_and_ethnicity +
location, data = nyts, family = binomial)

summary(mod_start)
#>
#> Call:
#> glm(formula = e_cig_use ~ grade + sex + race_and_ethnicity +
#> location, family = binomial, data = nyts)
#>
#> Coefficients:
#> Estimate Std. Error z value
#> (Intercept) -4.6017 0.1539 -29.91
#> grade7th 0.4461 0.1753 2.54
#> grade8th 0.9677 0.1607 6.02
#> grade9th 1.3830 0.1549 8.93
#> grade10th 1.9183 0.1513 12.68
#> grade11th 2.1385 0.1491 14.34
#> grade12th 2.4286 0.1492 16.28
#> gradeUngraded or Other Grade 2.5213 0.4487 5.62
#> sexFemale 0.1922 0.0580 3.32
#> race_and_ethnicitynon-Hispanic Black -0.6614 0.1121 -5.90
#> race_and_ethnicitynon-Hispanic other race -0.1021 0.1515

-0.67↪

#> race_and_ethnicitynon-Hispanic White 0.1983 0.0739 2.68
#> locationschool 0.7223 0.0648 11.14
#> Pr(>|z|)
#> (Intercept) < 2e-16 ***
#> grade7th 0.01095 *
#> grade8th 1.7e-09 ***



226 14 Logistic Regression

#> grade9th < 2e-16 ***
#> grade10th < 2e-16 ***
#> grade11th < 2e-16 ***
#> grade12th < 2e-16 ***
#> gradeUngraded or Other Grade 1.9e-08 ***
#> sexFemale 0.00091 ***
#> race_and_ethnicitynon-Hispanic Black 3.6e-09 ***
#> race_and_ethnicitynon-Hispanic other race 0.50061
#> race_and_ethnicitynon-Hispanic White 0.00726 **
#> locationschool < 2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> (Dispersion parameter for binomial family taken to be 1)
#>
#> Null deviance: 9754.9 on 18746 degrees of freedom
#> Residual deviance: 8886.8 on 18734 degrees of freedom
#> (1666 observations deleted due to missingness)
#> AIC: 8913
#>
#> Number of Fisher Scoring iterations: 6

We can use the tidy() function from the broom package to display the esti-
mated coefficients from the previous model. This time we add the exponen-
tiate = TRUE argument to exponentiate our coefficients so we can interpret
them as estimated change in odds rather than log odds. For example, we can
see that those who answered the survey at school have double the estimated
odds of reporting e-cigarette use compared to those who took the survey at
home/other, adjusting for grade, sex, race, and ethnicity.

tidy(mod_start, exponentiate = TRUE)
#> # A tibble: 13 x 5
#> term estimate std.error statistic p.value
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 (Intercept) 0.0100 0.154 -29.9 1.68e-196
#> 2 grade7th 1.56 0.175 2.54 1.10e- 2
#> 3 grade8th 2.63 0.161 6.02 1.73e- 9
#> 4 grade9th 3.99 0.155 8.93 4.41e- 19
#> 5 grade10th 6.81 0.151 12.7 7.94e- 37
#> # i 8 more rows
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14.1.1 Practice Question
Fit a logistic regression model with cigarette use as the outcome and age,
race_and_ethnicity, LGBT, and family_affluence as well as an interaction
between family_affluence and race_and_ethnicity as independent variables.
Your AIC should be 2430.8.

# Insert your solution here:

14.2 Residuals, Discrimination, and Calibration
Next, we look at the distribution of the residuals. The resid() function can
be used to find the residuals again, but this time we might want to specify
the Pearson and deviance residuals by specifying the type argument. We plot
histograms for both of these residual types using the following code. In both
plots, we can observe a multi-modal distribution, which reflects the binary
nature of our outcome.

par(mfrow=c(1,2))
hist(resid(mod_start, type = "pearson"), main = "Pearson Residuals")
hist(resid(mod_start, type = "deviance"), main = "Deviance Residuals")
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To further evaluate the fit of our model, we may want to observe the predicted
probabilities. The predict() function by default returns the predicted value
on the scale of the linear predictors. In this case, that is the predicted log odds.
If we want to find the predicted probabilities, we can update the argument by
specifying type="response". Additionally, we can predict on data not used to
train the model by using the argument newdata. Note that there are only 18,747
predicted probabilities despite our training data having more observations.
This is because the glm() function (and lm() function) drop any observations
with NA values when training. In the last chapter, we omitted incomplete cases
prior to analysis so that the predicted probabilities corresponded directly to
the rows in our data.

pred_probs <- predict(mod_start, type = "response")
length(pred_probs)
#> [1] 18747

If we want to find the class for each observation used in fitting the model, we
can use the model’s output, which stores the model matrix x and the outcome
vector y. We plot the distribution of estimated probabilities for each class.
Note that all the predicted probabilities are below 0.5, the typical cut-off for
prediction. This is in part due to the fact that we have such an imbalanced
outcome.

ggplot() +
geom_histogram(aes(x = pred_probs, fill = as.factor(mod_start$y)),

bins = 30) +
scale_fill_discrete(name = "E-Cig Use") +
labs(x = "Predicted Probabilities", y = "Count")
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14.2.1 Receiver Operating Characteristic Curve
We now plot the receiver operating characteristic (ROC) curve and compute
the area under the curve (AUC). The roc() function from the pROC package
builds a ROC curve. The function has several ways to specify a response
and predictor. For example, we can specify the response vector response and
predictor vector predictor. By default, with a 0/1 outcome, the roc() function
assumes class 0 is controls and class 1 is cases. We can also specify this in
the levels argument to set the value of the response for controls and cases,
respectively. Additionally, the function assumes the predictor vector specifies
predicted probabilities for the class 1. We can change the argument direction
= ">" if the opposite is true. We can plot the ROC curve by calling the plot()
function. We can add some extra information by adding the AUC (print.auc =
TRUE) and the threshold that maximizes sensitivity + specificity (print.thres
= TRUE).

roc_mod <- roc(predictor = pred_probs,
response = as.factor(mod_start$y),
levels = c(0,1), direction = "<")

plot(roc_mod, print.auc = TRUE, print.thres = TRUE)
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If we want to understand more about the curve, we can use the coords()
function to find the coordinates for each threshold used to create the curve.
The argument x= "all" specifies that we want to find all thresholds, but we
could also specify only to return local maxima.

roc_vals <- coords(roc = roc_mod, x = "all")
head(roc_vals)
#> threshold specificity sensitivity
#> 1 -Inf 0.00000 1.000
#> 2 0.00569 0.00523 1.000
#> 3 0.00713 0.01070 1.000
#> 4 0.00850 0.01547 0.999
#> 5 0.00934 0.01835 0.998
#> 6 0.00982 0.02404 0.996

For example, we could use this information to find the highest threshold with
a corresponding sensitivity above 0.75. This returns a threshold of 0.062. If we
were to predict class 1 for all observations with a predicted probability above
0.062, then we would achieve a sensitivity of 0.77 and specificity of 0.56 on
the training data.

roc_vals[roc_vals$sensitivity > 0.75, ] %>% tail(n = 1)
#> threshold specificity sensitivity
#> 63 0.062 0.555 0.768
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We use the threshold of 0.080 indicated on our ROC curve to create predicted
classes for our response. By comparing the result to our outcome using the
table() function, we can directly calculate measures like sensitivity, specificity,
positive and negative predictive values, and overall accuracy.

pred_ys <- ifelse(pred_probs > 0.08, 1, 0)
tab_outcome <- table(mod_start$y, pred_ys)
tab_outcome
#> pred_ys
#> 0 1
#> 0 11992 5395
#> 1 455 905

sens <- tab_outcome[2, 2]/(tab_outcome[2, 1]+tab_outcome[2, 2])
spec <- tab_outcome[1, 1]/(tab_outcome[1, 1]+tab_outcome[1, 2])
ppv <- tab_outcome[2, 2]/(tab_outcome[1, 2]+tab_outcome[2, 2])
npv <- tab_outcome[1, 1]/(tab_outcome[1, 1]+tab_outcome[2, 1])
acc <- (tab_outcome[1, 1]+tab_outcome[2, 2])/sum(tab_outcome)

data.frame(Measures = c("Sens", "Spec", "PPV", "NPV", "Acc"),
Values = round(c(sens, spec, ppv, npv, acc),3))

#> Measures Values
#> 1 Sens 0.665
#> 2 Spec 0.690
#> 3 PPV 0.144
#> 4 NPV 0.963
#> 5 Acc 0.688

14.2.2 Calibration Plot
Another useful plot is a calibration plot. This type of plot groups the data
by the estimated probabilities and compares the mean probability with the
observed proportion of observations in class 1. It visualizes how close our esti-
mated distribution and true distribution are to each other. There are several
packages that can create calibration plots, but we demonstrate how to do this
using the ggplot2 package. First, we create a data frame with the predicted
probabilities and the outcome variable. Additionally, we group this data into
num_cuts groups based on the predicted probabilities using the cut() func-
tion. Within each group, we find the model’s predicted mean along with the
observed proportion and estimated standard errors.
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num_cuts <- 10
calib_data <- data.frame(prob = pred_probs,

bin = cut(pred_probs, breaks = num_cuts),
class = mod_start$y)

calib_data <- calib_data %>%
group_by(bin) %>%
summarize(observed = sum(class)/n(),

expected = sum(prob)/n(),
se = sqrt(observed * (1-observed) / n()))

calib_data
#> # A tibble: 10 x 4
#> bin observed expected se
#> <fct> <dbl> <dbl> <dbl>
#> 1 (0.00488,0.0322] 0.0212 0.0203 0.00188
#> 2 (0.0322,0.0592] 0.0440 0.0441 0.00328
#> 3 (0.0592,0.0862] 0.0621 0.0708 0.00451
#> 4 (0.0862,0.113] 0.0986 0.0988 0.00587
#> 5 (0.113,0.14] 0.131 0.123 0.0131
#> # i 5 more rows

Next, we plot the observed vs. expected proportions. We also used the esti-
mated standard error to create corresponding 95% confidence intervals. The
red line indicates a perfect fit where our estimated and true distributions
match. Overall, the plot shows that our model could be better calibrated.

ggplot(calib_data) +
geom_abline(intercept = 0, slope = 1, color = "red") +
geom_errorbar(aes(x = expected, ymin = observed - 1.96 * se,

ymax = observed + 1.96 * se),
colour="black", width=.01)+

geom_point(aes(x = expected, y = observed)) +
labs(x = "Expected Proportion", y = "Observed Proportion") +
theme_minimal()
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14.2.3 Practice Question
Create a calibration plot with five cuts for your model from the previous prac-
tice question (recall that this model should have cigarette use as the outcome
and age, race_and_ethnicity, LGBT, and family_affluence as well as an in-
teraction between family_affluence and race_and_ethnicity as independent
variables). It should look like Figure 14.1.

# Insert your solution here:

14.3 Variable Selection and Likelihood Ratio Tests
In the last chapter, we introduced the step() function to implement stepwise
variable selection. This function also works with glm objects. In this case,
we use this function to implement backward selection from a larger set of
covariates. We first remove any observations with NA values to ensure that
our training data does not change size as the formula changes.

nyts_sub <- nyts %>%
dplyr::select(location, sex, grade, otherlang, grades_in_past_year,

perceived_e_cig_use, race_and_ethnicity, LGBT,
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Figure 14.1: Calibration Plot.

psych_distress, family_affluence, e_cig_use) %>%
na.omit()

head(nyts_sub)
#> # A tibble: 6 x 11
#> location sex grade otherlang grades_in_past_year

perceived_e_cig_use↪

#> <fct> <fct> <fct> <fct> <fct> <dbl>
#> 1 school Male 6th No Mostly A's 0
#> 2 school Fema~ 6th No Mostly A's 0
#> 3 school Fema~ 6th No Mostly C's 0
#> 4 school Fema~ 6th No Mostly A's 0
#> 5 school Fema~ 6th No Mostly B's 0
#> 6 school Male 6th No Not Sure 0
#> # i 5 more variables: race_and_ethnicity <chr>, LGBT <chr>,
#> # psych_distress <chr>, family_affluence <chr>, e_cig_use <fct>
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To implement backward selection, we first create a model with all the covari-
ates included. The period . in the formula indicates that we want to include
all variables. Next, we use the step() function. Since we are using backward
selection, we only need to specify the lower formula in the scope.

model_full <- glm(e_cig_use ~ ., data = nyts_sub, family = binomial)
mod_step <- step(model_full, direction = 'backward',

scope = list(lower = "e_cig_use ~ sex + grade +
race_and_ethnicity + location"))

#> Start: AIC=6093
#> e_cig_use ~ location + sex + grade + otherlang +

grades_in_past_year +↪

#> perceived_e_cig_use + race_and_ethnicity + LGBT +
psych_distress +↪

#> family_affluence
#>
#> Df Deviance AIC
#> - family_affluence 2 6038 6090
#> <none> 6037 6093
#> - otherlang 1 6042 6096
#> - LGBT 2 6051 6103
#> - psych_distress 3 6106 6156
#> - grades_in_past_year 6 6126 6170
#> - perceived_e_cig_use 1 6416 6470
#>
#> Step: AIC=6090
#> e_cig_use ~ location + sex + grade + otherlang +

grades_in_past_year +↪

#> perceived_e_cig_use + race_and_ethnicity + LGBT + psych_distress
#>
#> Df Deviance AIC
#> <none> 6038 6090
#> - otherlang 1 6043 6093
#> - LGBT 2 6052 6100
#> - psych_distress 3 6106 6152
#> - grades_in_past_year 6 6128 6168
#> - perceived_e_cig_use 1 6418 6468

Stepwise selection keeps most variables in the model and only drops family
affluence. In the following output, we can see the AUC for this model has
improved to 0.818.
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roc_mod_step <- roc(predictor = predict(mod_step, type = "response"),
response = as.factor(mod_step$y),
levels = c(0, 1), direction = "<")

plot(roc_mod_step, print.auc = TRUE, print.thres = TRUE)
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If we want to compare this model to our previous one, we could use a likelihood
ratio test since the two models are nested. The lrtest() function from the
lmtest package allows us to input two nested glm models and performs a
corresponding Chi-squared likelihood ratio test. First, we need to ensure that
our initial model is fit on the same data used in the stepwise selection. The
output indicates a statistically significant improvement in the model likelihood
with the inclusion of the other variables.

mod_start2 <- glm(e_cig_use ~ grade + sex + race_and_ethnicity +
location, data = nyts_sub, family = binomial)

print(lrtest(mod_start2, mod_step))
#> Likelihood ratio test
#>
#> Model 1: e_cig_use ~ grade + sex + race_and_ethnicity + location
#> Model 2: e_cig_use ~ location + sex + grade + otherlang +

grades_in_past_year +↪

#> perceived_e_cig_use + race_and_ethnicity + LGBT + psych_distress
#> #Df LogLik Df Chisq Pr(>Chisq)
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#> 1 13 -3369
#> 2 26 -3019 13 701 <2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

14.4 Extending Beyond Binary Outcomes
The glm() function can be used to fit models for other possible families and
non-binary outcomes. For example, we can fit models where the outcome might
follow a Poisson distribution or negative binomial distribution by updating the
family argument. In the following code, we fit a Poisson model to model the
number of e-cigarettes used in the last 30 days by setting family = poisson.
However, despite our outcome being a count value, this model does not appear
to be a good fit for our data.

mod_poisson <- glm(num_e_cigs ~ grade + sex + race_and_ethnicity +
location, data = nyts, family = poisson)

par(mfrow=c(1,2))
hist(predict(mod_poisson, type = "response"), main = "Model",

xlab = "Predicted Values")
hist(nyts$num_e_cigs, main = "Observed", xlab = "Number E-Cigs")
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14.5 Exercises
1. Create a new variable tobacco_use representing any tobacco use in

the past 30 days (including e-cigarettes, cigarettes, and/or cigars),
as well as a new variable perceived_tobacco_use equal to the max-
imum of the perceived cigarette and e-cigarette use. Then, create
a new data frame nyts_sub that contains these two new columns
as well as columns for sex, grades in the past year, psych distress,
and family affluence. Finally, fit a logistic regression model with
this new tobacco use variable as the outcome and all other selected
variables as independent variables.

2. Perform stepwise selection on your model from Question 1 with di-
rection = "both", setting the upper scope of the model selection
procedure to be a model including all two-way interactions and the
lower scope to be a model including only an intercept. To specify all
possible interactions, you can use the formula "tobacco_use ~ .^2".
Use the tidy() function to display the exponentiated estimated co-
efficients for the resulting model along with a confidence interval.

3. According to your model from Question 2, what is the estimated
probability of tobacco use for a girl with mostly Cs, moderate psych
distress, and a perceived tobacco use of 0.5? Use the predict()
function to answer this question.
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4. Construct a ROC curve for the model from Question 2 and find
the AUC as well as the threshold that maximizes sensitivity and
specificity.





15
Model Selection

In Chapter 13 and Chapter 14, we included one simple method for model
selection, stepwise selection. This chapter expands upon our model selection
tools in R by focusing on regularized regression. The two packages we cover
are glmnet (Friedman, Tibshirani, and Hastie 2010) and L0Learn (Hazimeh,
Mazumder, and Nonet 2023). These two packages focus on different types of
model regularization.

library(HDSinRdata)
library(tidyverse)
library(glmnet)
library(L0Learn)

To demonstrate these packages, we use the same motivating example as
in Chapter 13. Recall, that the NHANESsample dataset contains lead, blood
pressure, BMI, smoking status, alcohol use, and demographic variables from
NHANES 1999-2018. Our focus is looking at the association between blood
lead levels and systolic blood pressure. We first create a single systolic blood
pressure by averaging across all measurements. We also transform lead with
a log transformation before dropping variables we want to exclude from our
analysis.

# load in data
data(NHANESsample)

# transform SBP and lead
NHANESsample$SBP <-
rowMeans(NHANESsample[c("SBP1", "SBP2", "SBP3", "SBP4")],

na.rm=TRUE)
NHANESsample$LEAD <- log(NHANESsample$LEAD)

# remove variables not to include in the model
nhanes <- NHANESsample %>%
select(-c(ID, HYP, LEAD_QUANTILE, DBP1, DBP2, DBP3, DBP4,

SBP1, SBP2, SBP3, SBP4, YEAR)) %>%

241
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na.omit()

# convert to factors
nhanes$SEX <- factor(nhanes$SEX)
nhanes$RACE <- factor(nhanes$RACE)
nhanes$EDUCATION <- factor(nhanes$EDUCATION)
nhanes$BMI_CAT <- factor(nhanes$BMI_CAT)
nhanes$ALC <- factor(nhanes$ALC)

15.1 Regularized Regression
Suppose we have a numeric data matrix 𝑋 ∈ ℝ𝑛×𝑝 and outcome vector 𝑦 ∈ ℝ𝑛.
We let 𝑥𝑖 denote the vector representing the 𝑖th row of 𝑋. This corresponds to
the 𝑖th observation. When we refer to regularized regression, we are referring
to solving the following optimization problem that minimizes the average loss
plus a penalty term.

min
(𝛽0,𝛽)∈ℝ𝑝+1

1
𝑛

𝑛
∑
𝑖=1

𝑙(𝑦𝑖, 𝛽0 + 𝛽𝑇 𝑥𝑖) + Pen(𝛽) (15.1)

The function 𝑙(𝑦𝑖, 𝛽0 +𝛽𝑇 𝑥𝑖) represents the loss function. For linear regression,
this corresponds to the squared error (𝑦𝑖 −𝛽0 −𝛽𝑇 𝑥𝑖)2. For logistic regression,
this loss corresponds to the logistic loss function.

The penalty terms we implement include the following:

• L0 Norm: ||𝛽||0 = ∑𝑝
𝑗=1 1(𝛽𝑗 ≠ 0), the number of non-zero coefficients,

• L1 Norm: ||𝛽||1 = ∑𝑝
𝑗=1 |𝛽𝑗|, the sum of absolute values of the coefficients,

and

• Squared L2 Norm: ||𝛽||22 = ∑𝑝
𝑗=1 𝛽2

𝑗 , the sum of squared coefficients.

15.2 Elastic Net
We first consider L1 and L2 regularization. In particular, consider the following
penalty term, referred to as elastic net regularization,

𝜆 [𝛼||𝛽||1 + (1 − 𝛼)||𝛽||22] ,
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where 𝜆 is a complexity parameter and 𝛼 controls the balance between the
two norms. A model with only L1 regularization (𝛼 = 1) corresponds to lasso
regression while a model with only L2 regularization (𝛼 = 0) corresponds to
ridge regression. Note that the penalty depends on the scale of 𝑋 and we
typically assume each column has been standardized.

The glmnet package implements elastic net regularization. It assumes our
data are in the form described previously. Therefore, we first create our nu-
meric data matrix x and output vector y. Some of our variables are categorical,
so in order to create a numeric matrix we need to one-hot encode them. We can
do so using the model.matrix() function which takes in a formula and a data
frame and creates the corresponding design matrix including creating dummy
variables from factor variables and implementing any transformations. Note
that we drop the first generated column which corresponds to the intercept.
The transformation to our outcome does not impact the result.

x <- model.matrix(log(SBP) ~ ., nhanes)[, -1]
head(x)
#> AGE SEXFemale RACEOther Hispanic RACENon-Hispanic White
#> 1 77 0 0 1
#> 2 49 0 0 1
#> 3 37 0 0 1
#> 4 70 0 0 0
#> 5 81 0 0 1
#> 6 38 1 0 1
#> RACENon-Hispanic Black RACEOther Race EDUCATIONHS

EDUCATIONMoreThanHS↪

#> 1 0 0 0 1
#> 2 0 0 0 1
#> 3 0 0 0 1
#> 4 0 0 0 0
#> 5 0 0 0 0
#> 6 0 0 0 1
#> INCOME SMOKEQuitSmoke SMOKEStillSmoke LEAD BMI_CAT25<BMI<30
#> 1 5.00 0 0 1.609 0
#> 2 5.00 1 0 0.470 1
#> 3 4.93 0 0 0.875 0
#> 4 1.07 1 0 0.470 1
#> 5 2.67 0 1 1.705 1
#> 6 4.52 0 1 0.405 1
#> BMI_CATBMI>=30 ALCYes
#> 1 0 1
#> 2 0 1
#> 3 1 1
#> 4 0 1



244 15 Model Selection

#> 5 0 1
#> 6 0 1

Our outcome vector corresponds to log transformed systolic blood pressure.

y <- log(nhanes$SBP)

The glmnet() function fits an elastic net regression model. This requires us
to specify our input matrix x and response variable y. Additionally, we can
specify the assumed distribution for y using the family argument. In our
subsequent example, we fit this model with 𝛼 = 1 and 25 different values of
𝜆. By default, glmnet() sets 𝛼 to 1 and creates a grid of 100 different values
of lambda. It is also the default to standardize x, which we can turn off by
specifying standardize = FALSE in our function call.

mod_lasso <- glmnet(x, y, family = "gaussian", alpha = 1,
nlambda = 25)

If we plot the resulting object, we can see the model coefficients for each
resulting model by plotting how the coefficient for each variable changes with
the value of 𝜆. The plot() function by default plots these against the penalty
term but we can also specify to plot against the 𝜆 values on the log scale. The
label argument adds a label to each line, though these are often hard to read.
The numbers at the top of the plot indicate how many non-zero coefficients
were included in the model for different 𝜆 values. Read the documentation
?glmnet to see the other possible inputs including the penalty.factor and
weights arguments.

plot(mod_lasso, xvar = "lambda", label = TRUE)
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We can also print our results. This prints a matrix with the values of 𝜆 used.
For each 𝜆 value we can also see the number of non-zero coefficients (Df) and
the percent deviance explained (%dev).

print(mod_lasso)
#>
#> Call: glmnet(x = x, y = y, family = "gaussian", alpha = 1, nlambda

= 25)↪

#>
#> Df %Dev Lambda
#> 1 0 0.0 0.0674
#> 2 1 11.6 0.0459
#> 3 1 17.0 0.0313
#> 4 1 19.5 0.0213
#> 5 4 21.0 0.0145
#> 6 5 23.1 0.0099
#> 7 7 24.3 0.0067
#> 8 8 24.9 0.0046
#> 9 9 25.2 0.0031
#> 10 9 25.4 0.0021
#> 11 12 25.6 0.0014
#> 12 13 25.6 0.0010
#> 13 14 25.7 0.0007
#> 14 14 25.7 0.0005
#> 15 14 25.7 0.0003
#> 16 14 25.7 0.0002
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#> 17 14 25.7 0.0001
#> 18 14 25.7 0.0001
#> 19 15 25.7 0.0001
#> 20 15 25.7 0.0000

We can extract the model for a particular value of 𝜆 using the coef() function.
The argument s specifies the value of 𝜆. For the particular value of 𝜆 chosen
in the following code, only age has a non-zero coefficient. Note that the coef()
function returns the coefficients on the original scale.

coef(mod_lasso, s = 0.045920)
#> 16 x 1 sparse Matrix of class "dgCMatrix"
#> s1
#> (Intercept) 4.75241
#> AGE 0.00121
#> SEXFemale .
#> RACEOther Hispanic .
#> RACENon-Hispanic White .
#> RACENon-Hispanic Black .
#> RACEOther Race .
#> EDUCATIONHS .
#> EDUCATIONMoreThanHS .
#> INCOME .
#> SMOKEQuitSmoke .
#> SMOKEStillSmoke .
#> LEAD .
#> BMI_CAT25<BMI<30 .
#> BMI_CATBMI>=30 .
#> ALCYes .

We can also use the predict() function to predict blood pressure for this
particular model. In the function call, we have specified our value of 𝜆 as well
as our data matrix x as the data to predict on.

pred_lasso <- predict(mod_lasso, s = 0.045920, newx = x)

This shows our observed model fit for a fairly high penalty term. In order to
choose the best value of 𝜆, we use 5-fold cross-validation. First, we randomly
assign each observation to one of five folds using the sample() function. We
can see that this splits the data into folds of roughly equal size.
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set.seed(1)
foldid <- sample(1:5, size = nrow(x), replace = TRUE)
table(foldid)
#> foldid
#> 1 2 3 4 5
#> 6081 5967 6048 6188 6121

Next, we call the cv.glmnet() function which implements k-fold cross-
validation across a grid of 𝜆 values. Similar to before, we specified x, y, and
alpha = 1. This time, we also include the measure to use for cross-validation
(mse indicates mean squared error) and provide the fold vector foldid. If you
do not want to provide folds, you can instead use the nfolds argument to
specify the number of folds desired and the cv.glmnet() function will create
them. Plotting the returned object shows us the estimated mean squared er-
ror for different values of 𝜆 as well as error bars for each estimate. Similar to
before, it also shows the number of non-zero coefficients at the top.

cv_lasso <- cv.glmnet(x, y, foldid = foldid, alpha = 1,
type.measure = "mse")

plot(cv_lasso)
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There are two vertical dashed lines included in the plot. These correspond
to two values of 𝜆 that are stored in our object. The first is lambda.min. This
corresponds to the 𝜆 value with the lowest estimated mean squared error. The
other is lambda.1se. This corresponds to the largest 𝜆 value whose estimated
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mean squared error is within one standard error of the lowest value. As indi-
cated in the plot, this corresponds to a model with fewer included coefficients
and higher regularization.

We use the lambda.min value as our chosen 𝜆 value. To extract the coefficients
corresponding to this 𝜆 value we again use the coef() function. However, this
𝜆 might not be one of the initial 25 used for our mod_lasso object. In this case,
the coef() function uses linear interpolation to get the estimated coefficients.
If we want to refit our model for this particular value of 𝜆, we can instead
specify the argument exact = TRUE and provide x and y.

lasso_coef <- coef(mod_lasso, s = cv_lasso$lambda.min,
exact = TRUE, x = x, y = y)

lasso_coef
#> 16 x 1 sparse Matrix of class "dgCMatrix"
#> s1
#> (Intercept) 4.63458
#> AGE 0.00367
#> SEXFemale -0.02652
#> RACEOther Hispanic -0.00677
#> RACENon-Hispanic White -0.00531
#> RACENon-Hispanic Black 0.03257
#> RACEOther Race 0.00493
#> EDUCATIONHS .
#> EDUCATIONMoreThanHS -0.00942
#> INCOME -0.00396
#> SMOKEQuitSmoke -0.00753
#> SMOKEStillSmoke -0.00397
#> LEAD 0.00880
#> BMI_CAT25<BMI<30 0.01452
#> BMI_CATBMI>=30 0.03688
#> ALCYes 0.00547

We now repeat the same process for a model with 𝛼 = 0 and 𝛼 = 0.5. In
this case, we call the glmnet() function with our chosen 𝜆 value to find the
coefficients. This is equivalent to what we did for our lasso model. Last, we
create a data frame with the estimated coefficients for each model. The coef()
function returns a matrix, so this requires converting these to numeric vectors.

# cross-validation using same folds
cv_ridge <- cv.glmnet(x, y, foldid = foldid, alpha = 0,

type.measure = "mse")
cv_elastic <- cv.glmnet(x, y, foldid = foldid, alpha = 0.5,

type.measure = "mse")
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# Refit model on full data with chosen lambda
mod_ridge <- glmnet(x, y, alpha = 0, lambda = cv_ridge$lambda.min)
mod_elastic <- glmnet(x, y, alpha = 0.5, lambda = cv_ridge$lambda.min)

# extract coefficients for a table
res_coef <- data.frame(name = c("Intercept", colnames(x)),

lasso = round(as.numeric(lasso_coef), 3),
ridge = round(as.numeric(coef(mod_ridge)), 3),
elastic = round(as.numeric(coef(mod_elastic)),

3))
res_coef
#> name lasso ridge elastic
#> 1 Intercept 4.635 4.646 4.650
#> 2 AGE 0.004 0.003 0.003
#> 3 SEXFemale -0.027 -0.025 -0.020
#> 4 RACEOther Hispanic -0.007 -0.007 0.000
#> 5 RACENon-Hispanic White -0.005 -0.005 -0.002
#> 6 RACENon-Hispanic Black 0.033 0.031 0.027
#> 7 RACEOther Race 0.005 0.004 0.000
#> 8 EDUCATIONHS 0.000 0.000 0.000
#> 9 EDUCATIONMoreThanHS -0.009 -0.010 -0.006
#> 10 INCOME -0.004 -0.004 -0.002
#> 11 SMOKEQuitSmoke -0.008 -0.006 0.000
#> 12 SMOKEStillSmoke -0.004 -0.005 0.000
#> 13 LEAD 0.009 0.011 0.008
#> 14 BMI_CAT25<BMI<30 0.015 0.014 0.000
#> 15 BMI_CATBMI>=30 0.037 0.035 0.022
#> 16 ALCYes 0.005 0.004 0.000

The coefficients between the models are not so different. We can also compare
their mean squared errors, which are also similar. Since our lasso model was
fit on a grid of 𝜆 values, we again have to specify this value.

mean((nhanes$SBP - exp(predict(mod_lasso, newx = x,
s = cv_lasso$lambda.min)))^2)

#> [1] 268
mean((nhanes$SBP - exp(predict(mod_ridge, newx = x)))^2)
#> [1] 268
mean((nhanes$SBP - exp(predict(mod_elastic, newx = x)))^2)
#> [1] 270
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15.3 Best Subset
The second package we introduce in this chapter is one that allows us to fit
models with an L0 penalty term. The package L0Learn considers penalties
of the following forms.

• L0 only: 𝜆||𝛽||0
• L0L1: 𝜆||𝛽||0 + 𝛾||𝛽||1
• L0L2: 𝜆||𝛽||0 + 𝛾||𝛽||22
To fit a model with an L0 penalty term, we use the L0Learn.fit() function.
Similar to glmnet(), we need to specify our input matrix x and response vector
y as well as our penalty using the penalty argument. We can also specify a
number of 𝜆 values to consider nLambda and specify the family through the
loss function loss.

mod_l0 <- L0Learn.fit(x, y, penalty = "L0", loss = "SquaredError",
nLambda = 20)

Plotting the returned object also shows how the coefficients for each variable
change with the penalty term, given by the support size or number of non-
zero coefficients in this case. We can also print the returned object to see the
different values of 𝜆 used and the corresponding number of included variables.

plot(mod_l0)
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print(mod_l0)
#> lambda gamma suppSize
#> 1 1.08e-01 0 0
#> 2 1.07e-01 0 1
#> 3 6.51e-03 0 2
#> 4 5.00e-03 0 3
#> 5 4.22e-03 0 4
#> 6 1.75e-03 0 5
#> 7 5.36e-04 0 7
#> 8 3.23e-04 0 8
#> 9 1.92e-04 0 9
#> 10 1.42e-04 0 10
#> 11 1.04e-04 0 11
#> 12 6.80e-05 0 12
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#> 13 1.75e-05 0 14
#> 14 4.06e-07 0 15
#> 15 3.94e-07 0 15
#> 16 3.03e-08 0 15
#> 17 5.87e-09 0 15
#> 18 9.43e-10 0 15
#> 19 3.48e-10 0 15
#> 20 2.19e-10 0 15

To extract the model for a particular value, we can use the coef() function
and specify the 𝜆 and 𝛾 values to use.

coef_l0 <- coef(mod_l0, lambda = 1.75475e-03, gamma = 0)

Unfortunately, this output doesn’t include variable names so we add them
manually.

rownames(coef_l0) <- c("Intercept", colnames(x))
coef_l0
#> 16 x 1 sparse Matrix of class "dgCMatrix"
#>
#> Intercept 4.63847
#> AGE 0.00379
#> SEXFemale -0.03130
#> RACEOther Hispanic .
#> RACENon-Hispanic White .
#> RACENon-Hispanic Black 0.03753
#> RACEOther Race .
#> EDUCATIONHS .
#> EDUCATIONMoreThanHS .
#> INCOME -0.00535
#> SMOKEQuitSmoke .
#> SMOKEStillSmoke .
#> LEAD .
#> BMI_CAT25<BMI<30 .
#> BMI_CATBMI>=30 0.02760
#> ALCYes .

If instead we want to include a penalty with an L0 and L2 norm term, we can
change our penalty argument to penalty = L0L2 and specify a number of 𝛾
values to test.
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mod_l0l2 <- L0Learn.fit(x, y, penalty = "L0L2",
loss = "SquaredError",
nLambda = 20, nGamma = 10)

The L0Learn package also includes a function to use cross-validation to
choose these parameters. Unfortunately, it does not include an option to spec-
ify your own folds. Instead, we use the nFolds argument to specify to run
5-fold cross-validation. This function also allows us to specify a number of 𝜆
and 𝛾 values, or we can use the default number. Plotting the result shows
the estimated mean squared error with error bars for each model and the
corresponding support size.

cv_l0l2 = L0Learn.cvfit(x, y, loss = "SquaredError",
nFolds = 5, penalty = "L0L2")

plot(cv_l0l2)
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The returned results are stored in cvMeans. This is a list of matrices — one
for each value of 𝛾. To extract these into a more manageable form, we use
the sapply() function to convert each matrix to a numeric vector and create
a matrix of results. The columns of this matrix correspond to the 10 𝛾 values
used, and each column of this matrix corresponds to 100 𝜆 values chosen for
that particular value of 𝛾. We use the which() function to find which one has
the lowest estimated mean squared error.
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cv_res <- sapply(cv_l0l2$cvMeans, as.numeric)
min_ind <- which(cv_res == min(cv_res), arr.ind = TRUE)
min_ind
#> row col
#> [1,] 11 10

We can then extract out the corresponding 𝛾 and 𝜆 values through the fit
object returned in our result.

gamma_min <- cv_l0l2$fit$gamma[[min_ind[2]]]
lambda_min <- cv_l0l2$fit$lambda[[min_ind[2]]][min_ind[1]]

We find the estimated coefficients for this model using the coef() function on
the cross-validation object cv_l0l2.

cv_coef_l0 <- coef(cv_l0l2, gamma = gamma_min, lambda = lambda_min)
rownames(cv_coef_l0) <- c("Intercept", colnames(x))
cv_coef_l0
#> 16 x 1 sparse Matrix of class "dgCMatrix"
#>
#> Intercept 4.61671
#> AGE 0.00382
#> SEXFemale .
#> RACEOther Hispanic .
#> RACENon-Hispanic White .
#> RACENon-Hispanic Black 0.04216
#> RACEOther Race .
#> EDUCATIONHS .
#> EDUCATIONMoreThanHS .
#> INCOME .
#> SMOKEQuitSmoke .
#> SMOKEStillSmoke .
#> LEAD .
#> BMI_CAT25<BMI<30 .
#> BMI_CATBMI>=30 .
#> ALCYes .

Last, we use the predict() function on cv_l0l2 to evaluate our resulting model.
To do so, we need to specify 𝜆 and 𝛾 as well as our data x. This model is much
sparser than the ones in the previous section, but our mean squared error on
our training data is a little higher.
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pred_l0l2 <- predict(cv_l0l2, gamma = gamma_min,
lambda = lambda_min, newx = x)

mean((nhanes$SBP - exp(pred_l0l2))^2)
#> [1] 275

15.4 Exercises
For these exercises, we use the nyts data from Chapter 14. Our outcome of
interest is whether or not someone uses any tobacco product.

1. Create a new variable tobacco_use representing any tobacco use in
the past 30 days (including e-cigarettes, cigarettes, and/or cigars).
Then, create a new data frame nyts_sub that contains this new col-
umn as well as columns for location, age, sex, race, whether someone
identifies with the LGBT community, grades in the past year, per-
ceived_cigarette use, perceived e-cigarette use, psych distress, and
family affluence.

2. Create an outcome vector y corresponding to the column to-
bacco_use and a model matrix x containing all other covariates.

3. Fit a L1 (lasso), L2 (ridge), and L0 (best subset) penalized regres-
sion model using 5-fold cross-validation. Create a data frame with
the corresponding coefficients for all models. Be sure to update the
loss function to reflect our binary outcome.

4. Report the AUC and accuracy of these three models on the training
data.
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Case Study: Predicting Tuberculosis Risk

For this chapter, we use the tb_diagnosis dataset seen in Chapter 6 from the
HDSinRdata package. These data contains information on 1,762 patients
in rural South Africa and urban Uganda who presented at a health clinic
with tuberculosis-related symptoms and who were tested for tuberculosis (TB)
using Xpert MTB/RIF (Baik et al. 2020). Our goal is to conduct a similar
regression analysis to Baik et al. (2020) and use these data to derive a risk
model for screening patients for treatment while awaiting Xpert results. Unlike
Baik et al. (2020), we do not restrict our analysis to simple integer risk score
models.

library(tidyverse)
library(HDSinRdata)
library(gt)
library(gtsummary)
library(glmnet)
library(pROC)

Similar to Baik et al. (2020), we use the data from rural South Africa to derive
our risk model and use the data from urban Uganda as a withheld validation
set. Further, we divide the data from South Africa into a training and test set
using a 70/30 split.

# data from package
data(tb_diagnosis)

# training data
tb_southafrica <- tb_diagnosis %>%
filter(country == "South Africa") %>%
select(-country) %>%
na.omit()

# validation data
tb_uganda <- tb_diagnosis %>%
filter(country == "Uganda") %>%

257
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select(-country) %>%
na.omit()

# train/test split
train_index <- sample(1:nrow(tb_southafrica),

0.70*nrow(tb_southafrica),
replace = FALSE)

tb_train <- tb_southafrica[train_index,]
tb_test <- tb_southafrica[-train_index,]

The following table shows our data stratified by TB diagnosis. We observe
that our data are well balanced between the two groups and that we see
key differences in the distributions of our observed clinical and demographic
variables. For example, those whose blood results confirmed TB generally had
more observed symptoms and were more likely to have had symptoms for over
two weeks.

tbl_summary(tb_southafrica, by = c(tb),
label = list(age_group ~ "Age",

hiv_pos ~ "HIV Positive",
diabetes ~ "Diabetes",
ever_smoke ~ "Ever Smoked",
past_tb ~ "Past TB Diagnosis",
male ~ "Male",
hs_less ~ "< HS Education",
two_weeks_symp ~ "Symptoms for Two Weeks",
num_symptoms ~ "Number of TB Symptoms")) %>%

modify_spanning_header(c("stat_1", "stat_2") ~
"**TB Diagnosis**") %>%

as_gt()

TB Diagnosis
Characteristic 0, N = 7051 1, N = 7021

Age
    [55,99) 170 (24%) 102 (15%)
    [15,25) 121 (17%) 85 (12%)
    [25,35) 120 (17%) 166 (24%)
    [35,45) 136 (19%) 202 (29%)
    [45,55) 158 (22%) 147 (21%)
HIV Positive
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    0 519 (74%) 331 (47%)
    1 186 (26%) 371 (53%)
Diabetes
    0 683 (97%) 677 (96%)
    1 22 (3.1%) 25 (3.6%)
Ever Smoked
    0 492 (70%) 419 (60%)
    1 213 (30%) 283 (40%)
Past TB Diagnosis
    0 613 (87%) 574 (82%)
    1 92 (13%) 128 (18%)
Male
    0 395 (56%) 275 (39%)
    1 310 (44%) 427 (61%)
< HS Education
    0 73 (10%) 46 (6.6%)
    1 632 (90%) 656 (93%)
Symptoms for Two Weeks
    0 258 (37%) 106 (15%)
    1 447 (63%) 596 (85%)
Number of TB Symptoms
    1 427 (61%) 174 (25%)
    2 181 (26%) 163 (23%)
    3 67 (9.5%) 199 (28%)
    4 30 (4.3%) 166 (24%)

1n (%)

16.1 Model Selection
Our goal is to predict TB diagnosis. We compare two risk models: a logistic
regression model and a lasso logistic regression model. For both of these mod-
els, we fit our model on the training data. For the lasso model, we use 5-fold
cross-validation to choose the penalty parameter. In the following code, we
create a table with the estimated exponentiated coefficients.

# fit logistic model
mod_logistic <- glm(tb ~ ., data = tb_train, family = binomial)

# fit lasso model with CV
X_train <- model.matrix(tb~., data = tb_train)[, -1]
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y_train <- tb_train[,1]
mod_lasso_cv <- cv.glmnet(X_train, y_train, alpha = 1,

family = "binomial", nfolds = 5)

# refit for given lambda
mod_lasso <- glmnet(X_train, y_train, alpha = 1, family = "binomial",

lambda = mod_lasso_cv$lambda.min)

# create data frame
coef_df <- data.frame(Logistic = signif(exp(coef(mod_logistic)), 3),

Lasso =
signif(exp(as.numeric(coef(mod_lasso))), 3))

coef_df
#> Logistic Lasso
#> (Intercept) 0.0595 0.0714
#> age_group[15,25) 1.3300 1.2100
#> age_group[25,35) 2.8600 2.5700
#> age_group[35,45) 2.1800 1.9800
#> age_group[45,55) 1.4100 1.2900
#> hiv_pos1 2.3300 2.3100
#> diabetes1 1.8400 1.7100
#> ever_smoke1 0.7240 0.7580
#> past_tb1 1.3600 1.3200
#> male1 2.2400 2.1400
#> hs_less1 1.0700 1.0300
#> two_weeks_symp1 2.5800 2.5000
#> num_symptoms2 1.9400 1.8700
#> num_symptoms3 5.7800 5.5300
#> num_symptoms4 9.9500 9.4400

After fitting both models, we evaluate model performance on the withheld
test set using an ROC curve. The ROC curve shows similar discrimination for
both models. Therefore, we choose the lasso model for its potential sparsity
and parsimony.

par(mfrow = c(1,2))

# logistic regression model ROC
pred_test_logistic <- predict(mod_logistic, tb_test,

type = "response")
roc_test_logistic <- roc(predictor = pred_test_logistic,

response = tb_test$tb,
levels = c(0,1), direction = "<")
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plot(roc_test_logistic, print.auc = TRUE)

# lasso model ROC
X_test <- model.matrix(tb~., data = tb_test)[,-1]
pred_test_lasso <- as.numeric(predict(mod_lasso, newx = X_test,

type = "response"))
roc_test_lasso <- roc(predictor = pred_test_lasso,

response = tb_test$tb,
levels = c(0,1), direction = "<")

plot(roc_test_lasso, print.auc = TRUE)
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We refit the lasso model on the full data from South Africa and present the
updated model in the subsequent code chunk.

# fit lasso model with CV
X_train_full <- model.matrix(tb~., data = tb_southafrica)[, -1]
y_train_full <- tb_southafrica[,1]
mod_cv_full <- cv.glmnet(X_train_full, y_train_full, alpha = 1,

family = "binomial", nfolds = 5)

# refit for given lambda
mod_full <- glmnet(X_train_full, y_train_full, alpha = 1,
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family = "binomial",
lambda = mod_cv_full$lambda.min)

# create data frame
coef_df <- data.frame(
Variable = c("Intercept", colnames(X_train_full)),
Lasso = signif(exp(as.numeric(coef(mod_full))), 3))

coef_df
#> Variable Lasso
#> 1 Intercept 0.0558
#> 2 age_group[15,25) 1.3200
#> 3 age_group[25,35) 2.5100
#> 4 age_group[35,45) 1.7800
#> 5 age_group[45,55) 1.2100
#> 6 hiv_pos1 2.5800
#> 7 diabetes1 1.9100
#> 8 ever_smoke1 0.7800
#> 9 past_tb1 1.2100
#> 10 male1 2.4800
#> 11 hs_less1 1.2400
#> 12 two_weeks_symp1 2.5100
#> 13 num_symptoms2 1.8600
#> 14 num_symptoms3 5.9000
#> 15 num_symptoms4 10.1000

16.2 Evaluate Model on Validation Data
We then evaluate the lasso model on the withheld validation data. This data
comes from clinics in urban Uganda and contains only 387 observations. The
generated table shows that this population differs from our training population
including having a lower proportion of patients diagnosed with TB.

tbl_summary(tb_diagnosis, by = c(country),
label = list(tb ~ "TB Diagnosis",

age_group ~ "Age",
hiv_pos ~ "HIV Positive",
diabetes ~ "Diabetes",
ever_smoke ~ "Ever Smoked",
past_tb ~ "Past TB Diagnosis",
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male ~ "Male",
hs_less ~ "< HS Education",
two_weeks_symp ~ "Symptoms for Two Weeks",
num_symptoms ~ "Number of TB Symptoms")) %>%

modify_spanning_header(c("stat_1", "stat_2") ~ "**Country**") %>%
as_gt()

Country
Characteristic South Africa, N = 1,4071 Uganda, N = 3871

TB Diagnosis
    0 705 (50%) 281 (73%)
    1 702 (50%) 106 (27%)
Age
    [55,99) 272 (19%) 20 (5.2%)
    [15,25) 206 (15%) 86 (22%)
    [25,35) 286 (20%) 129 (33%)
    [35,45) 338 (24%) 99 (26%)
    [45,55) 305 (22%) 53 (14%)
HIV Positive
    0 850 (60%) 256 (66%)
    1 557 (40%) 131 (34%)
Diabetes
    0 1,360 (97%) 383 (99%)
    1 47 (3.3%) 4 (1.0%)
Ever Smoked
    0 911 (65%) 328 (85%)
    1 496 (35%) 59 (15%)
Past TB Diagnosis
    0 1,187 (84%) 331 (86%)
    1 220 (16%) 56 (14%)
Male
    0 670 (48%) 199 (51%)
    1 737 (52%) 188 (49%)
< HS Education
    0 119 (8.5%) 30 (7.8%)
    1 1,288 (92%) 357 (92%)
Symptoms for Two Weeks
    0 364 (26%) 63 (16%)
    1 1,043 (74%) 324 (84%)
Number of TB Symptoms
    1 601 (43%) 156 (40%)
    2 344 (24%) 128 (33%)
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    3 266 (19%) 68 (18%)
    4 196 (14%) 35 (9.0%)

1n (%)

The ROC curve shows that the AUC on the validation data is lower than on
the training data but still maintains meaningful discrimination.

# lasso validation roc
X_val <- model.matrix(tb~., data = tb_uganda)[, -1]
pred_val <- as.numeric(predict(mod_full, newx = X_val,

type = "response"))
roc_val_lasso <- roc(predictor = pred_val,

response = tb_uganda$tb,
levels = c(0,1), direction = "<")

plot(roc_val_lasso, print.auc = TRUE)
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Part V

Writing Larger Programs





17
Logic and Loops

Now that we have seen a lot of the functionality of R, we can start to build up
more structured code using programming structures. To start, we introduce
control flows. Control flows are code blocks that determine a sequence of code
to be run. The two types of control flows we introduce are if-else blocks and
loops.

library(HDSinRdata)
library(tidyverse)

17.1 Logic and Conditional Expressions
You may recall that we introduced logical operators in Chapter 3. We used
these operators through conditional expressions such as when we indexed a
data frame or the ifelse() or casewhen() functions. For example, in the follow-
ing code we have vectors of systolic and diastolic blood pressure measurements,
and we write a logical operator to check if at least one of the systolic measure-
ments is above 140 or if at least one of the diastolic measurements is above
90.

sbp_measurements <- c(131, 110, 125, 145, NA, 130)
dbp_measurements <- c(70, NA, 80)
any(sbp_measurements > 140, na.rm = TRUE) |
any(dbp_measurements > 90, na.rm = TRUE)

#> [1] TRUE

Let’s look at another example. Suppose these blood pressure measurements
were taken consecutively but may have missing values. We want to create
a single value to summarize the blood pressure for the patient. If we only
have one blood pressure reading, then we use that value. However, if there
is more than one blood pressure reading, then we drop the first observation
and average the rest. We assume that not all values are NA. The following
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code uses an ifelse() function to do this by first checking if there is a single
reading. If so, it takes the sum removing NA values to find that value. If not,
we find all non-NA values and remove the first one before averaging.

sbp_measurements <- c(131, 110, 125, 145, NA, 130)
ifelse(sum(!is.na(sbp_measurements)) == 1,

sum(sbp_measurements, na.rm = TRUE),
mean(sbp_measurements[!is.na(sbp_measurements)][-1]))

#> [1] 128

We could also accomplish the same thing using a control flow called an if-else
statement. An if-else statement follows the following structure. First, we have
a conditional statement. If the conditional statement is true, then the code
in the if statement, the code within the first set of curly braces, is run. If
not, then the code in the else statement is run. In this way, the control flow
controls how our code is executed.

if (conditional statement){
block of code if the statement is TRUE
} else{
block of code if the statement is FALSE
}

The next code chunk shows an example where the conditional statement is the
same as previously. Note that since either the code in the if or else statement
is run, the object avg_val is always defined.

sbp_measurements <- c(131, 110, 125, 145, NA, 130)
if(sum(!is.na(sbp_measurements)) == 1){
avg_val <- sum(sbp_measurements, na.rm = TRUE)

} else{
avg_val <- mean(sbp_measurements[!is.na(sbp_measurements)][-1])

}
avg_val
#> [1] 128

One of the things to notice is that an if statement can only take in a single
Boolean. It cannot take in a vector of Boolean values like the ifelse() and
case_when() functions can. In that way, the ifelse() function is useful because
it can be applied to multiple instances, but it isn’t as flexible if you want to
run multiple lines of code depending on the logical statement since it doesn’t
allow you to include a code block.

Let’s do another example of both an if-else statement and the ifelse() func-
tion to demonstrate this. In the following code, we use an if-else statement to
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determine if someone has hypertension. Note that here we have two lines of
code that are run in each part: one line is printing the result and the other is
storing a 0/1 value. Try changing the values of sbp and dbp.

sbp <- 130
dbp <- 80
if(sbp > 140 | dbp > 90){
print("Hypertension")
hyp <- 1

} else{
print("No Hypertension")
hyp <- 0

}
#> [1] "No Hypertension"
hyp
#> [1] 0

Now let’s replicate this with the ifelse() function which allows us to take
in paired vectors of blood pressure measurements and return a vector of 0/1
values for each observation. The difference here is that we cannot include a
print statement since we are only allowed one return value.

sbp_measurements <- c(131, 110, 125, 145, 130)
dbp_measurements <- c(90, 75, 80, 90, 80)
hyp <- ifelse(sbp_measurements > 140 | dbp_measurements > 90, 1, 0)
hyp
#> [1] 0 0 0 1 0

Note that in the previous code we ignored NA values. In this case, changing
sbp or dbp to NA causes an error in the if-else statement. This is because
it does not understand which code block to run. The ifelse() can handle
NA values and returns NA for observations with no TRUE/FALSE value. To
accomplish this with the if-else statement, we can add in multiple conditions.
In particular, we can add in more statements as follows. In this case, the first
time we reach a true conditional statement, we run the code in that block. If
no statements are true, then we run the last block of code. So we always run
exactly one block of code.

if (conditional statement A){
block of code if the statement A is TRUE
} else if (conditional statement B){
block of code if the statement B is TRUE and statement A is FALSE
} else if (conditional statement C){
block of code if the statement C is TRUE and statement A and B are FALSE
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} else{
block of code if statements A, B, and C are all FALSE
}

Let’s use this with our hypertension example. In this case, we want to return
NA if the answer is not known. Change the values so that you reach each code
block. The order of the conditions matters because if the first statement is
false, then we know at least one value is not NA. This also means that we
would only check the fourth condition if the first three are false, which means
that neither of the values can be NA.

sbp <- 130
dbp <- 80
if(is.na(sbp) & is.na(dbp)){
# Both are NA
hyp <- NA

} else if ((is.na(sbp) & dbp <= 90) | (is.na(dbp) & sbp <= 140)){
# One is NA and the other is below the threshold
hyp <- "Inconclusive"

} else if ((is.na(sbp) & dbp > 90) | (is.na(dbp) & sbp > 140)){
# One is NA and the other is above the threshold
hyp <- "Hypertension"

} else if (dbp > 90 | sbp > 140){
# Neither are NA and at least one is above the threshold
hyp <- "Hypertension"

} else{
# Neither are NA and neither is above the threshold
hyp <- "No Hypertension"

}
hyp
#> [1] "No Hypertension"

We can rearrange these conditions to have one less condition. In the following
code chunk, we first check if both are NA. Then we check that at least one
value is above the threshold. This statement uses the fact that both can’t be
NA since the first condition must be false. Next, in the third statement, if at
least one value is NA, then that must mean the other is below the threshold,
so the result is inconclusive.

sbp <- 130
dbp <- 80
if(is.na(sbp) & is.na(dbp)){
# Both are NA
hyp <- NA
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} else if (sum(dbp > 90, sbp > 140, na.rm=TRUE) >= 1){
# At least one is above the threshold - sum removes NA values
hyp <- "Hypertension"

} else if (is.na(sbp) | is.na(dbp)){
# Inconclusive
hyp <- "Inconclusive"

} else{
# Neither is NA and neither is above the threshold
hyp <- "No Hypertension"

}
hyp
#> [1] "No Hypertension"

This can still seem like a lot of conditions to replicate what we did in a
single line with an ifelse() function. In general, we prefer a simpler format.
Consider the following code. In this case, we have two vectors x and y that
we want to plot. First, we check whether these vectors are numeric. If not,
we convert them to factors. Rather than returning a value as we do with an
ifelse() function, we are changing our data depending on the type of x and y.
Note that these statements do not contain an else statement. That is because
we don’t want to run any code when the condition is false. For these single-
expression if statements, we technically don’t need the curly braces for R to
understand what code to run, but we consider it good practice to always wrap
your code in curly braces when writing control flows.

# example x and y vectors
y <- factor(rbinom(100, 1, 0.3))
x <- rnorm(100, ifelse(y == 0, 0, 0.75))
# change x to factor(rbinom(100, 1, 0.3)) to observe

# convert x and y to factors if not numeric!
if (!is.numeric(x)){ x <- as.factor(x) }
if (!is.numeric(y)){ y <- as.factor(y) }

# find type of plot
if(is.factor(x) & is.factor(y)){
# barplot
p <- ggplot() + geom_bar(aes(x = x, fill = y), position = "dodge")

} else if (!is.factor(y) | !(is.factor(x))){
# boxplot when one numeric, one factor
p <- ggplot() + geom_boxplot(aes(x = x, y = y))

} else{
# scatter plot when both numeric
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p <- ggplot() + geom_point(aes(x = x, y = y))
}
p

0

1

−3 −2 −1 0 1 2
x

y

17.1.1 Practice Question
Use both an if-else statement and a case_when() function to find y as given
by the following function.

𝑦 =
⎧{
⎨{⎩

1 𝑥 > 0
0 𝑥 = 0
0.1 𝑥 < 0

# Insert your solution here:
x <- 2 # change x to different values to check your solution!

17.2 Loops
Another common control flow we use is loops. Loops capture code chunks we
want to run multiple times. For this example, we use the NHANESSample data
from the HDSinRdata package.
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nhanes <- NHANESsample %>%
select(c(RACE, SEX, SBP1, DBP1, HYP, LEAD)) %>%
na.omit()

In the following code, we are fitting a simple linear regression model for systolic
blood pressure with the single covariate of blood lead level for each race group
and storing the associated coefficients and p-values. This code is repetitive,
since we repeat the same steps for each group and the only element that is
changing is the race group. This makes our code cluttered but also means we
are prone to introducing errors. In fact, you can see that we have the wrong
coefficient and p-value for the fourth model.

dat1 <- nhanes[nhanes$RACE == "Mexican American", ]
mod1 <- summary(lm(SBP1 ~ LEAD, data = dat1))
coef1 <- mod1$coefficients[2, 1]
pval1 <- mod1$coefficients[2, 4]

dat2 <- nhanes[nhanes$RACE == "Non-Hispanic White", ]
mod2 <- summary(lm(SBP1 ~ LEAD, data = dat2))
coef2 <- mod2$coefficients[2, 1]
pval2 <- mod2$coefficients[2, 4]

dat3 <- nhanes[nhanes$RACE == "Non-Hispanic Black", ]
mod3 <- summary(lm(SBP1 ~ LEAD, data = dat3))
coef3 <- mod3$coefficients[2, 1]
pval3 <- mod3$coefficients[2, 4]

dat4 <- nhanes[nhanes$RACE == "Other Hispanic", ]
mod4 <- summary(lm(SBP1 ~ LEAD, data = dat4))
coef4 <- mod3$coefficients[2, 1]
pval4 <- mod3$coefficients[2, 4]

dat5 <- nhanes[nhanes$RACE == "Other Race", ]
mod5 <- summary(lm(SBP1 ~ LEAD, data = dat5))
coef5 <- mod5$coefficients[2, 1]
pval5 <- mod5$coefficients[2, 4]

data.frame(
group = c("Mexican American", "Non-Hispanic White",

"Non-Hispanic Black", "Other Hispanic", "Other Race"),
coefs = c(coef1, coef2, coef3, coef4, coef5),
pvals = c(pval1, pval2, pval3, pval4, pval5))

#> group coefs pvals
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#> 1 Mexican American 0.783 3.97e-11
#> 2 Non-Hispanic White 2.500 7.81e-138
#> 3 Non-Hispanic Black 2.005 1.83e-51
#> 4 Other Hispanic 2.005 1.83e-51
#> 5 Other Race 1.927 1.06e-11

We can rewrite this code slightly. In this case, we create an object i which
represents the index of the group. This change means that the only thing that
changes for each group is that we update the value of i. This is much less
prone to errors, but still long.

# Initialize results data frame
race_values <- c("Mexican American", "Non-Hispanic White",

"Non-Hispanic Black", "Other Hispanic", "Other Race")
df <- data.frame(
group = race_values,
coefs = 0,
pvals = 0)

i <- 1
dat <- nhanes[nhanes$RACE == df$group[i], ]
mod <- summary(lm(SBP1 ~ LEAD, data = dat))
df$coef[i] <- mod$coefficients[2, 1]
df$pval[i] <- mod$coefficients[2, 4]

i <- 2
dat <- nhanes[nhanes$RACE == df$group[i], ]
mod <- summary(lm(SBP1 ~ LEAD, data = dat))
df$coef[i] <- mod$coefficients[2, 1]
df$pval[i] <- mod$coefficients[2, 4]

i <- 3
dat <- nhanes[nhanes$RACE == df$group[i], ]
mod <- summary(lm(SBP1 ~ LEAD, data = dat))
df$coef[i] <- mod$coefficients[2, 1]
df$pval[i] <- mod$coefficients[2, 4]

i <- 4
dat <- nhanes[nhanes$RACE == df$group[i], ]
mod <- summary(lm(SBP1 ~ LEAD, data = dat))
df$coef[i] <- mod$coefficients[2, 1]
df$pval[i] <- mod$coefficients[2, 4]
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i <- 5
dat <- nhanes[nhanes$RACE == df$group[i], ]
mod <- summary(lm(SBP1 ~ LEAD, data = dat))
df$coef[i] <- mod$coefficients[2, 1]
df$pval[i] <- mod$coefficients[2, 4]

df
#> group coefs pvals coef pval
#> 1 Mexican American 0 0 0.783 3.97e-11
#> 2 Non-Hispanic White 0 0 2.500 7.81e-138
#> 3 Non-Hispanic Black 0 0 2.005 1.83e-51
#> 4 Other Hispanic 0 0 1.242 8.46e-09
#> 5 Other Race 0 0 1.927 1.06e-11

We now write this code as a for loop. A for loop contains two pieces. First, we
have an iterator. An iterator traverses an object that has a natural order. Most
of the time we traverse over vectors, but we could also have a list object. The
second piece is a code block. This code is run for each value of the iterator.

for (iterator_name in object){
code to run for each value of the iterator
}

Two simple for loops are given in the next code chunk. In the first loop, our
iterator goes through the vector 1:5, whereas in the second one our iterator
iterates through the vector of names. In the first loop, we traverse the numbers
1 to 5 and for each number we run the code that squares the number. In each
iteration, we name the current number we are on to be i. That means that
the first time through the loop i is equal to 1, the second time i has value 2,
etc. In the second loop, our iterator is also a vector, but this time it is names.
In this case, in each iteration the object name represents the current name we
are on as we traverse the vector of names. In particular, the first time through
the loop name is equal to “Alice”, the second time name has value “Bob”, and
so forth.

for (i in 1:5){
print(sqrt(i))

}
#> [1] 1
#> [1] 1.41
#> [1] 1.73
#> [1] 2
#> [1] 2.24
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names <- c("Alice", "Bob", "Carol")
for (name in names){
print(paste("Hello,", name))

}
#> [1] "Hello, Alice"
#> [1] "Hello, Bob"
#> [1] "Hello, Carol"

Let’s apply this to our example. First, we use a numeric iterator i that takes
on values 1 to 5. This directly replicates our previous code in which the value
of i changed for each race group. Our result matches our previous result.

df <- data.frame(group = race_values, coefs = 0, pvals = 0)

for (i in 1:5){
dat <- nhanes[nhanes$RACE == df$group[i], ]
mod <- summary(lm(SBP1 ~ LEAD, data = dat))
df$coef[i] <- mod$coefficients[2, 1]
df$pval[i] <- mod$coefficients[2, 4]

}
df
#> group coefs pvals coef pval
#> 1 Mexican American 0 0 0.783 3.97e-11
#> 2 Non-Hispanic White 0 0 2.500 7.81e-138
#> 3 Non-Hispanic Black 0 0 2.005 1.83e-51
#> 4 Other Hispanic 0 0 1.242 8.46e-09
#> 5 Other Race 0 0 1.927 1.06e-11

Let’s show a different way we could write the same loop. This time we set our
iterator to be the race group name. In this case, we update how we are storing
the coefficients and p-values because we are not iterating over an index.

coefs <- c()
pvals <- c()

for (group in race_values){
dat <- nhanes[nhanes$RACE == group, ]
mod <- summary(lm(SBP1 ~ LEAD, data = dat))
coefs <- c(coefs, mod$coefficients[2, 1])
pvals <- c(pvals, mod$coefficients[2, 4])

}
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data.frame(group = race_values, coefs = coefs, pvals = pvals)
#> group coefs pvals
#> 1 Mexican American 0.783 3.97e-11
#> 2 Non-Hispanic White 2.500 7.81e-138
#> 3 Non-Hispanic Black 2.005 1.83e-51
#> 4 Other Hispanic 1.242 8.46e-09
#> 5 Other Race 1.927 1.06e-11

Another type of loop is a while loop. A while loop does not have an iterator.
Instead, a while loop checks a condition. If the condition is true, the loop runs
the code in the code block. If the condition is false, it stops and breaks out of
the loop. That is, the code is run until the condition is no longer met.

while (condition){
code to run each iteration
}

The following code gives an example of a simple while loop. In this case, the
loop keeps dividing x by 2 until it is below a certain value of 3. In this case,
x starts above 3, so the condition starts off being true, and we would divide
x by 2 to get 50. Since 50 is still greater than 3, the code block is run again,
etc. Once x reaches a value of 1.5625, the condition no longer holds and the
code stops. Note that if the condition was x > -1, it would hold indefinitely,
creating what is called an infinite loop.

x <- 100
while(x > 3){
x <- x/2

}
x
#> [1] 1.56

Let’s do another example with a bigger code block. The following code creates
a Poisson process of arrivals where in each iteration we generate the next
arrival time by drawing from an exponential distribution. Once we reach the
end of the time interval (i.e., the current time is greater than 10) we stop. If
we re-run this chunk of code, we might get a different length vector.

arrivals <- c()
time <- 0
next_arrival <- rexp(1, rate = 3)

# Find the time of all arrivals in the time period [0,10]
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while(time+next_arrival <= 10){
# Update list of arrivals and current time
arrivals <- c(arrivals, next_arrival)
time <- time + next_arrival

# Generate the next arrival
next_arrival <- rexp(1, rate = 3)

}

Given that we have two types of loops, how do you know which to use? You
should use a for loop when you know how many times you go through the loop
and/or if there is a clear object to iterate through. On the other hand, while
loops are useful if you don’t know how many times you go through the loop
and you want to iterate through the loop until something happens. Within a
for loop, you can also break out early using the break operator. This stops the
loop similar to a while loop but is sometimes less succinct. The following code
loops through the blood pressure measurements we defined earlier to find if
any of the observations meet the criteria for hypertension.

# Start with assumption that the result is FALSE
res <- FALSE
for (i in 1:length(sbp_measurements)){

# If above threshold, update the result and stop the loop
if (sbp_measurements[i] > 140 | dbp_measurements[i] < 90){
res <- TRUE
break

}
}

17.2.1 Practice Question
Use a loop to find the smallest integer number x such that 2.3𝑥 ≥ 100. The
answer should be 6.

# Insert your solution here:
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17.3 Avoiding Control Flows with Functions
We just introduced logic and loops, and now I’m going to tell you to avoid
them when you can. Control flows are very useful programming structures,
but sometimes the same thing can be done without them. For example, we
can find whether there is at least one observation that has hypertension using
a single line of code.

any(sbp_measurements > 140 | dbp_measurements > 90)
#> [1] TRUE

Another example we saw previously was using an ifelse() or case_when()
function instead of an if-else statement. These two functions are vectorized
functions. That means that the function is evaluated on a vector of values
rather than having to loop through each value separately. Vectorized functions
return a vector or results of the same size as your input. That means that if
you needed to do a computation on every element of a vector, you could either
loop through all the elements and call that function or you can take advantage
of the vectorized structure and call the function on the whole vector. This is
generally cleaner and more efficient. The any() function is not a vectorized
function since it returns a single TRUE/FALSE value, but it also helps to
make our code cleaner.

Another tool that can help with brevity in this manner is the family of apply
functions. These are loop-hiding functions. In Chapter 3, we saw the apply(X,
MARGIN, FUN) function. This function called the function FUN on either the
rows (MARGIN = 1) or columns (MARGIN = 2) of X, which is data frame or matrix
X. In the next code chunk, we generate a random matrix X and compute the
column means using a loop and using the apply() function. We can see that
the version with the apply() function is simpler.

X <- matrix(rnorm(100), nrow = 20, ncol = 5)

# Apply mean function
apply(X, 2, mean)
#> [1] 0.00304 -0.00750 -0.19395 -0.09142 -0.33965

# Loop through columns
means <- rep(0, ncol(X))
for (i in 1:ncol(X)){
means[i] <- mean(X[, i])

}
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means
#> [1] 0.00304 -0.00750 -0.19395 -0.09142 -0.33965

Another loop-hiding function is lapply(X, FUN). This function applies the
function X to each element of X. In this case, X functions like an iterator, and
FUN is a function representing what we want to do in each iteration. The result
is returned as a list of the function output for each value of X. We use this
function in the regression context we saw earlier. Here, X is our vector of
groups, and we have written a custom function to be able to call that code on
each group. We learn how to write our own functions in Chapter 18.

find_lm_results <- function(group){
# Runs simple linear regression and returns coefficient and p-value
dat <- nhanes[nhanes$RACE == group, ]
mod <- summary(lm(SBP1 ~ LEAD, data = dat))
return(mod$coefficients[2, c(1, 4)])

}

lapply(race_values, find_lm_results)
#> [[1]]
#> Estimate Pr(>|t|)
#> 7.83e-01 3.97e-11
#>
#> [[2]]
#> Estimate Pr(>|t|)
#> 2.50e+00 7.81e-138
#>
#> [[3]]
#> Estimate Pr(>|t|)
#> 2.01e+00 1.83e-51
#>
#> [[4]]
#> Estimate Pr(>|t|)
#> 1.24e+00 8.46e-09
#>
#> [[5]]
#> Estimate Pr(>|t|)
#> 1.93e+00 1.06e-11

Another useful function is sapply(X, FUN). This function operates similarly to
lapply(). However, it then tries to simplify the output to be either a vector
or matrix. You can remember the difference by remembering the l in lapply()
stands for list, and the s in sapply() stands for simplify.
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sapply(race_values, find_lm_results)
#> Mexican American Non-Hispanic White Non-Hispanic Black
#> Estimate 7.83e-01 2.50e+00 2.01e+00
#> Pr(>|t|) 3.97e-11 7.81e-138 1.83e-51
#> Other Hispanic Other Race
#> Estimate 1.24e+00 1.93e+00
#> Pr(>|t|) 8.46e-09 1.06e-11

The last loop-hiding function we introduce is replicate(n, expr). This runs
the code expression expr n times and returns the results. By default, this
simplifies the output similar to sapply(). If you set simplify=FALSE, it returns
a list. The following code generates a random matrix and computes the column
means six times.

replicate(6, colMeans(matrix(rnorm(100), ncol = 5)))
#> [,1] [,2] [,3] [,4] [,5] [,6]
#> [1,] 0.1197 -0.6537 0.2649 -0.0674 0.238 0.2204
#> [2,] 0.1361 0.0574 -0.3000 -0.2892 0.640 0.3535
#> [3,] -0.1059 0.0725 -0.0293 0.2266 -0.341 0.4936
#> [4,] -0.0129 -0.1177 -0.4985 0.1202 0.138 0.4212
#> [5,] -0.2019 -0.0823 0.0514 -0.0746 0.228 -0.0305

17.4 Exercises
For these exercises, we use the pain data from the HDSinRdata package.
You can use the help operator ?pain to learn more about the source of these
data and to read its column descriptions.

1. Create a new column PAT_RACE_SIMP that represents a patient’s race
using three categories: White, Black, or Other. First, do this using
the case_when() function. Then, use a loop and if-else statement to
accomplish the same thing.

2. For each category of your new column PAT_RACE_SIMP, subset the
data to that group and find the five body regions with the high-
est proportion of patients with pain. Your solution should use two
nested loops. Then, rewrite your code without using a loop.

3. The following code sorts a numeric vector x but is missing comments
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to explain the steps. Read through the code and add your own
comments to explain how this works.

x <- c(1,3,0,3,2,6,4)

n <- length(x)
for (i in 1:(n-1)){

next_ind <- i
for (j in (i+1):n){
if (x[j] < x[next_ind]){

next_ind <- j
}

}

temp <- x[i]
x[i] <- x[next_ind]
x[next_ind] <- temp

}

x
#> [1] 0 1 2 3 3 4 6

4. Write code using a loop that generates a series of Bernoulli random
variables with probability of success of 0.5 until at least 𝑟 < −6
successes occur. What distribution does this correspond to?



18
Functions

Functions are an important part of creating reproducible research and clean
code. So far we have been using many useful functions from base R and avail-
able packages by learning how to specify the inputs and use the output. We
now shift to writing our own functions. To start, we need to understand the
arguments and return values of functions as well as the scope of objects used
or created within functions. We also talk about how to document, test, and
debug your functions so that we can ensure they are correct and easy to use.
We use the testthat package to create simple tests for our functions.

library(testthat)
library(tidyverse)

One type of function we have already written is an anonymous function. These
are functions that are not saved or given a name. These functions typically
exist if we want to input a function argument to another function but we
don’t want to save that function for future use. For example, in the following
code, we use the apply() function on a data frame to find the proportion of
observations that are NA for each column. Note that since the function is
so short, it is easy enough to define within the apply() function call by just
including the code for what is returned. For functions with more than one line,
you would not want to use an anonymous function and would need to define
the function.

df <- data.frame(x1 = c(NA, 1, 1, 0),
x2 = c(0, 1, 0, 0),
x3 = c(0, 0, NA, NA))

apply(df, 2, function(x) sum(is.na(x)) / length(x))
#> x1 x2 x3
#> 0.25 0.00 0.50

283
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18.1 Components of a Function
To start storing functions, we need to give them a name and define their input
(arguments) and output (return values). To do so, we assign a function name
to a function object as shown in the following code. This example function
has two arguments arg1 and arg2 and returns output.

function_name <- function(arg1, arg2){
code to compute output from arguments
return(output)

}

Take a look at the following simple function. The name of this function is
say_hello, and there is no input (arguments) or output (return values) asso-
ciated with this function. Instead, it just prints out a hello statement.

say_hello <- function(){
print("Hello!")

}

Running the previous code creates an object called say_hello of the class
function. We can run this function by calling it using empty parentheses
(since there are no input arguments).

class(say_hello)
#> [1] "function"

say_hello()
#> [1] "Hello!"

We can add to this function by instead adding our first argument called name
which is a string and then printing “Hello, [name]!”. In the next code chunk,
we use the paste0() function which concatenates the string arguments into a
single string.

say_hello <- function(name){
print(paste0("Hello, ", name, "!"))

}
say_hello("Weici")
#> [1] "Hello, Weici!"
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18.1.1 Arguments
Arguments are inputs passed to functions so that they can complete the de-
sired computation. We can also have default values for these arguments. In this
case, those arguments do not have to be specified when calling the function.
For example, rnorm(10) uses the default value for the mean to understand
which distribution we want to use. In the following function, we find the Eu-
clidean distance from a given (x,y,z) coordinate and the origin (0,0,0) with a
default value of zero for all values.

dist_to_origin <- function(x = 0,y = 0,z = 0){
return(((x - 0)^2 + (y - 0)^2 + (z - 0)^2)^(0.5))

}

If we call this function with no arguments, it uses all the default values.

dist_to_origin()
#> [1] 0

However, if we call the function with one argument, the function assumes this
first argument is x. Similarly, it assumes the second value is y and the third
value is z. If we want to give the arguments without worrying about the order,
we can specify them using their names (see the last line in the following code
chunk).

dist_to_origin(1)
#> [1] 1
dist_to_origin(1, 2)
#> [1] 2.24
dist_to_origin(1, 2, 3)
#> [1] 3.74
dist_to_origin(y = 2, z = 3)
#> [1] 3.61

Besides passing in numeric values, strings, data frames, lists, or vectors, we can
also pass other types of objects in as arguments to a function. For example, we
can take another function in as an argument. In the next example, we create
two functions. The first function calculates the Euclidean distance between
two points. The second one computes the distance from a given point to the
origin. Note that this updated function to find the distance to the origin is
more flexible and written in a cleaner manner. First, it allows us to input a
point of any length. Second, it allows us to specify the distance function used.
This also demonstrates calling a function within another function.
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Try out calling euclidean_dist() and dist_to_origin() on different values.

euclidean_dist <- function(pt1, pt2){
# Finds the Euclidean distance from pt1 to pt2
return(sqrt(sum((pt1- pt2)^2)))

}

dist_to_origin <- function(pt1, dist_func = euclidean_dist){
# Finds the distance from pt1 to the origin
origin <- rep(0, length(pt1))
return(dist_func(pt1, origin))

}

dist_to_origin(c(1,1))
#> [1] 1.41

18.1.2 Practice Question
Write a function that calculates the Manhattan distance between two points
pt1 and pt2, where the Manhattan distance is the sum of absolute differences
between points across all the dimensions. To check your solution, you should
check that the distance between points pt1 <- c(1,-1,1.5) and pt2 <- c(0.5,
2.5, -1) is 6.5.

# Insert your solution here:

Another type of argument to a function can be a formula. If you have used
linear regression in R, you have seen this in practice. In the following code,
we fit a simple linear model where we specify a model formula y~x as the first
argument. We are also using default arguments for rnorm() on the first two
lines.

x <- rnorm(mean = 3, n = 100)
y <- x + rnorm(sd = 0.2, n = 100)

lm(y ~ x)
#>
#> Call:
#> lm(formula = y ~ x)
#>
#> Coefficients:
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#> (Intercept) x
#> 0.148 0.956

18.1.3 Return Values
If we read the documentation for lm() by calling ?lm, we can see that there
are a lot of arguments that have default values. The other thing to note about
the lm documentation is that there are multiple values returned. In fact, the
type of object returned is a list containing all the different things we want to
know about the results such as the coefficients.

simp_model <- lm(y ~ x)
simp_model$coefficients
#> (Intercept) x
#> 0.148 0.956

Since R only allows you to return one object, packaging the return values into a
list is a useful way to return multiple outputs from a function. In the following
example, we create a function coin_flips() that takes in a probability prob
and a number of iterations n (with default value 10) and simulates n coin flips
where the coin has a probability of prob of landing on heads. The function
returns the percentage of trials that were heads and the results of the coin flips.
We can access each of these returned values by using the names percent_heads
and results.

coin_flips <- function(prob, n = 10){
# Flips a coin with probability prob of heads for n trials

results <- rbinom(n = n, size = 1, prob = prob)
return(list(percent_heads = sum(results)/n, results = results))

}
trial <- coin_flips(0.6)
trial$percent_heads
#> [1] 0.3
trial$results
#> [1] 0 0 1 0 0 1 0 1 0 0

One important thing to know about R and return values: if you don’t specify
a return statement but assign the output of our function to an object, it
will assign the value to the last computed object by default. In the following
code, the value returned is 3. Avoid unexpected behavior by always using the
return() function.
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ex_return <- function(){
x <- 2
y <- 3

}
result <- ex_return()
result
#> [1] 3

18.1.4 Scope of Objects
When working within functions and calling functions, we want to remember
the scope of our objects. Global objects are objects defined outside of functions.
These values can also be accessed outside or inside functions. For example, the
object y is defined outside of a function and so is a global object, meaning we
can use its value inside the function.

y <- "Cassandra"

ex_scope <- function(){
return(paste("Hey,", y))

}

ex_scope()
#> [1] "Hey, Cassandra"

If we change the value of a global object within a function however, it does
not update the value outside of the function. In the subsequent code chunk,
we add 1 to y inside the function, but it does not change the value of y after
the function is done. Every time we run a function, R creates a new sub-
environment inside, which can access the values of global objects but also
creates its own local objects. In this case, the function creates its own object
y, which is a local object that is a copy of the original object.

As another example, the function also creates a local object called z which
ceases to exist after we run the function. If we try to print z on the last line,
we would get an error that z is not found. All objects created inside functions
only exist in that sub-environment and are erased when we are no longer in
the function. Therefore, we want to make sure we return any values we want
to store.

y <- 5
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ex_local <- function(x){
y <- y + 1
z <- x * y
return(y + z)

}

ex_local(2)
#> [1] 18
y
#> [1] 5

To update global objects within a function, you can use the <<- operator
(global assignment operator). This looks for an object in the global environ-
ment and updates its value (or creates an object with this value if none is
found). For example, the following function updates the value of the global
objects y. As a general practice, we should be careful using global objects
within a function, and it often is safer to use input arguments and return
values instead.

y <- 5

ex_update_global <- function(x){
y <<- y + 1
return(y + x)

}

ex_update_global(2)
#> [1] 8
y
#> [1] 6

18.1.5 Functions within Functions and Returning Functions
Sometimes we see functions written inside other functions. Writing functions
within functions can be useful to separate out some part of the code or to give
that function access to the local environment objects. In the following example,
the inner function has access to the value of x even though we have not passed
it as an argument. The downside of this structure is that the function add_x()
does not exist outside the function, so we cannot call it in other code.
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add_x_seq <- function(x){
# Adds x to 1:10 and returns
add_x <- function(y){

return(y + x)
}

return(add_x(1:10))
}

add_x_seq(3)
#> [1] 4 5 6 7 8 9 10 11 12 13
#add_x(3) # would return an error

If we want to use the created function, we can return it. In the updated
example, we return an anonymous function. By doing so, we create a unique
function for each x value.

add_x <- function(x){
# Returns a function to add x to any value
return(function(y) y + x)

}

add2 <- add_x(2)
add2(1:10)
#> [1] 3 4 5 6 7 8 9 10 11 12

add10 <- add_x(10)
add10(1:10)
#> [1] 11 12 13 14 15 16 17 18 19 20

18.2 Documenting Functions
The functions we wrote had minimal comments or documentation. When cre-
ating functions, we should document them including any information about
the format of the input and output. We do so using comments that precede the
function and start with #'. This style of function documentation is called rox-
ygen. The following code chunk shows an example for our Euclidean distance
function. You can see we provided information about the two arguments and
the return value. The roxygen style is the style used for published R packages.
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#' Euclidean distance
#'
#' @description Calculates the Euclidean distance between two points
#'
#' @param pt1 numeric vector
#' @param pt2 numeric vector
#' @return the Euclidean distance from pt1 to pt2
euclidean_dist <- function(pt1, pt2){
return((sum((pt1 - pt2)^2))^0.5)

}

Each comment should start with a pound sign and backtick. The first block
of lines is the introduction, and the first line of the comment block is reserved
for the title. This is the first information we want the user to know about the
function and should be a single line. For all other information besides the title,
we use certain tags.

• @description This tag should be placed first and is a place where you can
briefly put more information about the function beyond the title. You can
also add more details with the @details tag.

• @param This tag comes before each input argument’s description. For each
argument, we want to include the name and type, but we might also include
information on how that argument is used.

• @return This tag documents the returned object and specifies the type. If
we are returning a list, then we might include information about each object
in the list.

18.2.1 Practice Question
Write the documentation for the following coin flip function.

#' Insert your solution here:
coin_flips <- function(prob, n = 10){
results <- rbinom(n = n, size = 1, prob = prob)
return(list(percent_heads = sum(results)/n, results = results))

}
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18.3 Debugging and Testing
As we write more complex code and functions, we want to learn how to test
our code. When it comes to testing code, a good mantra is “test early and
test often”. So avoid writing too much code before running and checking that
the results match what you expect. Here are some simple principles that are
applicable to debugging in any setting.

• Start simple and build up in steps.
• Check your syntax by checking that all parentheses (), brackets [], and curly

braces {} match where you expect.
• Check that object names are correct and you don’t have any accidental typos

or that you are accidentally using the same name for different objects.
• Restart your R session and re-run all code.
• Check if you use the same object name for different objects.
• Localize your error by printing out the values of objects at each stage or use

break points in R.
• Modify your code one piece at a time and check all test values again to avoid

introducing new errors.

For example, suppose we want to write a function that finds any pairs of
numeric columns with a Pearson correlation with absolute value above a cer-
tain threshold. We want our code to be structured so that it makes sense, is
flexible to our needs, and avoids unnecessary work. To start building up this
function, we need to first think about the inputs and outputs we want. This
is called a top-down approach. Sketching out the overall steps your code needs
to complete before writing any of them can help to improve your structure
and avoid having to rewrite large pieces.

In this case, our input to this function is a data frame which could contain a
mixture of numeric and categorical columns and a threshold correlation value
with a default value of 0.6. We want to return a data frame with the pairs
and their correlation. This gives us a template for our documentation.

#' Find pairs of columns with strong correlation
#'
#' @description Finds all pairs of numeric columns with strong Pearson
#' correlation and returns the pairs in a data frame
#'
#' @param df data frame
#' @param threshold positive numeric threshold value to define a
#' strong correlation as one with absolute value above the threshold
#' @return data frame with one row for each pair of columns
#' with high correlation containing the names of the columns
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#' and the corresponding correlation
high_cor <- function(df, threshold = 0.6){
return()

}

Next, to start simple, we want to create some artificial data we can use to
test our function. We use the mvnrorm() function from the MASS package
(Venables and Ripley 2002) to control the correlation between our columns
and add in a categorical column that should be ignored by our function.

set.seed(4)
cor_mat <- matrix(c(1, 0.9, 0.4, 0,

0.9, 1, 0.3, 0,
0.4, 0.3, 1.0, 0,
0, 0, 0, 1.0), nrow = 4)

m <- round(MASS::mvrnorm(100, c(0,0,0,0), Sigma = cor_mat), 3)
test_df <- as.data.frame(m)
test_df$V5 <- sample(c("A", "B", "C"), 100, replace = TRUE)
high_cor(test_df)
#> NULL

We can use the cor() function to find the Pearson correlation.

cor(test_df[,-5])
#> V1 V2 V3 V4
#> V1 1.0000 0.9006 0.324 -0.0797
#> V2 0.9006 1.0000 0.291 -0.0702
#> V3 0.3241 0.2912 1.000 -0.2306
#> V4 -0.0797 -0.0702 -0.231 1.0000

Great, now let’s roughly sketch out the steps we need to complete.

1. Subset the data to only numeric columns.
2. Find the correlation of all pairs of columns.
3. Check if a pair has a strong correlation.
4. If so, add it to our results.

Let’s start with step 1. Before putting code into our function, we are going to
test our steps on our example data. To do so, we use the select_if() function
from the dplyr package.
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df_numeric <- select_if(test_df, is.numeric)
head(df_numeric)
#> V1 V2 V3 V4
#> 1 -0.656 0.417 1.188 0.685
#> 2 0.117 -0.336 -1.611 -0.115
#> 3 1.229 0.617 0.241 -0.356
#> 4 0.478 0.121 1.176 -0.106
#> 5 1.546 1.914 0.366 0.045
#> 6 0.416 0.110 1.630 -1.726

This worked. Next we need to find the strong correlations. Now, we can use the
correlation function to find the correlations. We then want to iterate through
all pairs to check if the absolute value of the correlation is above our threshold.
We use a loop for this. In our first attempt, we create a nested for loop where
i is the index of one column and j is the index of the second column in the
pair. We can see we must have some mistakes because we are getting pairs
where i and j are equal to each other, and we are also getting zeros. Note how
we are using print statements. This helps us to identify that we need to add
parentheses for the first for loop, and we need to update j to start at i+1.

cor_mat <- cor(df_numeric)
for (i in 1:nrow(cor_mat) - 1){
for (j in (i:nrow(cor_mat))){
print(paste(i, j))

}
}
#> [1] "0 0"
#> [1] "0 1"
#> [1] "0 2"
#> [1] "0 3"
#> [1] "0 4"
#> [1] "1 1"
#> [1] "1 2"
#> [1] "1 3"
#> [1] "1 4"
#> [1] "2 2"
#> [1] "2 3"
#> [1] "2 4"
#> [1] "3 3"
#> [1] "3 4"

Let’s try again. This time we create a variable n which is the number of
columns.
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cor_mat <- cor(df_numeric)
n <- nrow(cor_mat)
for (i in 1:(n-1)){
for (j in ((i+1):n)){
print(paste(i, j))

}
}
#> [1] "1 2"
#> [1] "1 3"
#> [1] "1 4"
#> [1] "2 3"
#> [1] "2 4"
#> [1] "3 4"

Next, we need to add an if statement to check whether there is a correlation
above the given threshold. In this case, to check if our code is working correctly,
we use a print statement for only those that meet the condition.

n <- nrow(cor_mat)
for (i in 1:(n-1)){
for (j in ((i+1):n)){
if(abs(cor_mat[i,j]) > 0.6){

print(paste(i, j))
}

}
}
#> [1] "1 2"

We have sketched out our code more thoroughly, so we have a good idea of
how we want to compute our result. We now move to writing our function.
Importantly, we need to make sure that we use our input arguments now
rather than our test values. In the subsequent version, we also add in a results
data frame that we use to keep track of our results, and we add an additional
argument for how to deal with NA values in calculating the correlations. The
output matches what we expect for our test data frame.

#' Find pairs of columns with strong correlation
#'
#' @description Finds all pairs of numeric columns with strong Pearson
#' correlation and returns the pairs in a data frame
#'
#' @param df data frame
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#' @param threshold positive numeric threshold value to define a
#' strong correlation as one with absolute value above the threshold
#' @param use an optional character string giving a method for
#' computing correlations in the presence of missing values.
#' This must be (an abbreviation of) one of the strings "everything",
#' "all.obs", "complete.obs", "na.or.complete", or
#' "pairwise.complete.obs".
#' @return data frame with one row for each pair of columns
#' with high correlation containing the names of the columns
#' and the corresponding correlation
high_cor <- function(df, threshold = 0.6, use = "everything"){

# create result data frame
res <- data.frame(name1 = vector("character"),

name2 = vector("character"),
cor = vector("numeric"))

# subset to numeric columns
df_numeric <- select_if(df, is.numeric)

# find correlations and variable names
cor_mat <- cor(df_numeric, use = use)

# go through pairs to find those with high correlations
n <- nrow(cor_mat)
for (i in 1:(n-1)){
for (j in ((i+1):n)){

if(abs(cor_mat[i,j]) > threshold){
res <- add_row(res,

name1 = colnames(cor_mat)[i],
name2 = colnames(cor_mat)[j],
cor = cor_mat[i,j])

}
}

}
return(res)

}
high_cor(test_df)
#> name1 name2 cor
#> 1 V1 V2 0.901

We can prevent unexpected behavior of our functions by using stop() func-
tions to limit a function to be run on certain types of arguments. This is helpful
if other people will use your function or if you might forget any assumptions
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you built into the function. The stop() function stops the execution of the
current expression and returns a message. In the following example, we check
to make sure that the point given is a numeric vector. Further, we check to
see whether the vector has length 0 and return 0 if it does.

#' Distance to the origin
#'
#' @description Calculates the distance from a single numeric vector
#' to the origin
#'
#' @param pt1 numeric vector
#' @param dist_fun function to compute the distance with, default is
#' Euclidean distance
#' @return the distance from pt1 to origin in the same dimension
dist_to_origin <- function(pt1, dist_func = euclidean_dist){

# check format of input
if(!(is.vector(pt1) & is.numeric(pt1))){
stop("pt1 must be a numeric vector")

}
if(length(pt1) == 0){
return(0)

}

# calculate the distance
origin <- rep(0, length(pt1))
return(dist_func(pt1, origin))

}

18.3.1 Unit Tests
We know our function high_cor() works on a single example. To thoroughly
test our functions, we want to run them on several different input values.
These types of tests are called unit tests. We try to vary these test values to
cover a wide range of possibilities. For example, for a numeric argument, test
positive and negative input values. For a vector input, test an empty vector, a
vector of length 1, and a vector with multiple values. If you discover an error,
we need to go back to debugging mode to resolve it.

To test our function, we use the testthat package (Wickham 2011). This in-
cludes several functions that can check our expectations. For example, there
is the expect_equal(object, expected) function which checks whether ob-
ject matches expected up to a given numeric tolerance. If we want to only
check the values of our objects but not the attributes, we can set the ar-
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gument ignore_attr = FALSE. Other functions from this package are ex-
pect_error(object) which can be used to test that an error message was
returned and expect_true(object) which can be used to test whether a con-
dition is met.

testthat::expect_equal(paste0("A","B"), "AB")
testthat::expect_true(mean(c(1,2,3)) > 1)

In the following code chunk, we demonstrate some tests for the
dist_to_origin() function. Our tests here focus on the format of the vec-
tor. We should test each function separately, so we would write a separate
batch of tests for the Euclidean distance function.

# check error message for character vector
expect_error(dist_to_origin(c("A")),

"pt1 must be a numeric vector")

# check error message for not a vector
expect_error(dist_to_origin(matrix(0)),

"pt1 must be a numeric vector")

# check for empty numeric vector
testthat::expect_equal(dist_to_origin(vector("numeric")), 0)

# check length 1 vector
testthat::expect_equal(dist_to_origin(c(2)), 2)

# check length 3 vector
testthat::expect_equal(dist_to_origin(c(2,8.5,3)), 9.233093,

tolerance = 0.0001)

18.3.2 Practice Question
Following are a series of tests for the function high_cor() with different data
frame sizes and types of columns. Unfortunately, not all of the tests are work-
ing. Use your debugging skills to fix the function to pass the tests and write
at least one additional test.

# mixed data frame - should return a data frame with three columns
expect_equal(high_cor(test_df),

data.frame(name1 = "V1", name2 = "V2",
cor = 0.9011631), tolerance = 0.001)
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# change threshold - lower, should have three pairs
expect_equal(high_cor(test_df, 0.2)$cor,

c(0.9011631, 0.31765407, 0.30748633),
tolerance = 0.001)

# change threshold - higher, should be empty
expect_equal(high_cor(test_df, 0.95)$cor, vector("numeric"),

tolerance = 0.001)

# single numeric column - should return an empty data frame
expect_equal(high_cor(test_df[,4:5])$cor, vector("numeric"))

# single row - should return an empty data frame
expect_equal(high_cor(test_df[1,])$cor, numeric())

18.4 Exercises
For each question, be sure to document your function(s) using roxygen style
documentation.

1. Standardizing a variable means subtracting the mean and then di-
viding through by the standard deviation. Create a function called
standardize_me() that takes a numeric vector as an argument, and
returns the standardized version of the vector. Write at least three
unit tests to check that the result is correct.

2. Suppose we have two binary vectors x and y each of length 𝑛. Let 𝑚1
be the number of indices where x or y has a 1 and 𝑚2 be the number
of indices where both x and y equal 1. For example, if x <- (1,1,0)
and y <- c(0,1,0) then 𝑚1 = 2 and 𝑚2 = 1. The Jaccard distance
is defined as 1−𝑚2/𝑚1 and measures the dissimilarity between two
binary vectors. Write a function jaccard_dist() that takes in two
binary vectors and returns the Jaccard distance between the two.

3. For this question we use a subset of the pain data from the HDSin-
Rdata package. Recall, that this data contains binary variables
representing where people experienced pain. Write a function that
takes in a data frame with all binary columns and returns a matrix
with the Jaccard distance between all observations. That is, if D is
the returned matrix, then D[i,j] is the Jaccard distance between
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observation i and observation j. Apply your function to the pain
data and plot the distribution of these distances.

library(HDSinRdata)
#> Warning: package 'HDSinRdata' was built under R version

4.4.1↪

pain_sub <- pain[1:500,]

4. The function in the following code chunk is supposed to take in a
positive integer and calculate how many positive integer divisors it
has (other than 1 and itself). However, the function is not getting
the right results. Debug the function. Then, think about ways you
could improve this function by changing the structure, documenta-
tion, and adding argument checks.

total <- 0
divisors <- function(x){
for(i in 1:x){
if (i %% x){

total <- total + 1
i <- i + 1

}
}
return(total)
}

divisors(2)
#> [1] 1
divisors(6)
#> [1] 5

5. In this problem, you create our own summary table. To start, create
a function that takes in a data frame and returns a summary table
that reports the mean and standard deviation for all continuous vari-
ables and the count and percentage for all categorical variables. An
example is given in Figure 18.1. Call your function on the NHANES
dataset with the columns selected in the subsequent code to match
what is shown in the figure.
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nhanes_df <- NHANESsample %>%
select(c(AGE, SEX, LEAD, HYP, SMOKE))

Figure 18.1: Example Summary Table.
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Case Study: Designing a Simulation Study

Simulation studies are an ideal setting for utilizing functions. When conduct-
ing a simulation study, we often need to generate data, run statistical meth-
ods, and collect results, and we replicate this for a large number of simulations.
Functions will ensure that we can write cleaner and reproducible code. In this
case study, we will write the code for a simulation study that is based on
the analysis by Hastie, Tibshirani, and Tibshirani (2020), which compared
different methods for sparse regression. For our purposes, we will focus on the
comparison between lasso and ridge regression, introduced in Chapter 15.

Our goal is to understand the predictive power of the two models for different
data settings. We will generate our training and test data using the following
data generating mechanism which relies on the number of observations 𝑛, the
number of predictors 𝑝, the sparsity 𝑠 ≤ 𝑝, predictor correlation level 𝜌, and
𝜈 signal-to-noise ratio.

1. We define a vector of coefficients 𝛽 ∈ ℝ𝑝 which has its first 𝑠 compo-
nents equal to 1 and the rest equal to 0. Note that our model will
not have an intercept.

2. We draw the rows of the predictor matrix 𝑋 ∈ ℝ𝑛×𝑝 from a mul-
tivariate normal distribution 𝑁𝑝(0, Σ), where Σ ∈ ℝ𝑝×𝑝 has entry
(𝑖, 𝑗) equal to $�^{|i-j|}.

3. We draw the outcome 𝑦 ∈ ℝ𝑛 from a normal distribution
𝑁(𝑋𝛽, 𝜎2𝐼), where 𝜎2 = 𝛽Σ𝛽

𝜈 . This ensures that the data has signal-
to-noise ratio, defined as Var(𝑥𝑇 𝛽)/Var(𝜎2), equal to 𝜈.

After generating our data, we will use 5-fold cross-validation to fit a lasso or
ridge regression model on the training data to get estimated coefficients ̂𝛽.
Last, we will predict on the withheld test set. The evaluation metrics we are
interested in are the time to fit the model (in seconds), the relative test error

RTE = ( ̂𝛽 − 𝛽)𝑇 Σ( ̂𝛽 − 𝛽) + 𝜎2

𝜎2 ,

and the proportion of variance explained

303



304 19 Case Study: Designing a Simulation Study

PVE = 1 − ( ̂𝛽 − 𝛽)𝑇 Σ( ̂𝛽 − 𝛽) + 𝜎2

𝛽𝑇 Σ𝛽 + 𝜎2 .

In Hastie, Tibshirani, and Tibshirani (2020), they vary all five parameters 𝑛,
𝑝, 𝑠, 𝜌, and 𝜈 to observe how the data generation impacts these metrics.

19.1 Outlining Our Approach
Before coding our method, let’s recap the steps we will need to perform for a
single simulation and practice top-down programming. In a single simulation,
we need to generate our training and test data, fit our models, and store the
results in a way that we can use later. There are two potential sketches of how
we can program this code shown in Figure 19.1. Take a look at the differences.
In the first, we are storing the data we generate and have a separate function
for each method. In the second, we have a function that calculates our end
metrics for an inputted model, and we have a function that runs through
the different methods. A benefit of the first approach is that it will be more
flexible; if we think of another method we want to compare, we would be easily
able to add it without having to re-run any other code. A benefit of the second
approach is that we are ensuring that the results stored for each method are
the same. Of course, you could also do a hybrid between the two and use a
metrics function in the first approach.

Figure 19.1: Example Approaches to Sketching out Functions.

Let’s take a closer look at the second approach. For our metrics function, we
have missed some inputs we will need. In particular, in order to calculate our
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end metrics, we will need to know the true coefficients 𝛽, the covariance matrix
Σ, and the level of noise 𝜎. Therefore, rather than returning a data frame, we
will return a list that will contain 𝑋, 𝑦, and these values. For the first approach,
this would require saving this information in a text file. Comparing between
our two options, we will implement the second approach that does not store
data. Another thing we can notice in our current sketch is that we likely want
to store the results as a csv file, so rather than returning a list, we should
return a vector that will correspond to a row in this file. Our final sketch is
shown in Figure 19.2.

Figure 19.2: Updated Function Sketch.

19.2 Coding Our Simulation Study
We first load in the packages we will use. We will use the MASS package
for the mvrnorm() function, which generates data from a multivariate normal
distribution, we will use the glmnet package to implement our lasso and
ridge models, and we will use the tidyverse and patchwork packages for
summarizing and plotting the results.
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library(MASS)
library(tidyverse)
library(patchwork)
library(glmnet)

We start by writing our function to generate our data. Our input here will be
the parameters 𝑛, 𝑝, 𝑠, 𝜌, and 𝜈 and our output will be a list.

#' Simulate data
#'
#' @param n Number of observations
#' @param p Number of variables
#' @param s Sparsity level (number of non-zero coefficients)
#' @param snr Signal-to-noise ratio
#' @param rho Predictor correlation level
#' @return List containing simulated covariate matrix `X`,
#' outcome vector `y`, true coefficient vector `beta`,
#' covariate matrix `Sigma`, and variance of y `sigma`
simulate_data <- function(n, p, s, snr, rho) {

# Generate covariance matrix
cov_mat = matrix(0, nrow = p, ncol = p)
for (row in 1:p) {
for (col in 1:p) {

cov_mat[row, col] = rho^(abs(row-col))
}

}

# Generate X
x <- mvrnorm(n=n, mu=rep(0,p), Sigma = cov_mat)

# Generate beta values
b <- rep(0, p)
b[1:s] <- 1

# find values
mu <- x %*% b
intercept <- -mean(mu)

# Calculate variance
var <- as.numeric((t(b) %*% cov_mat %*% b)/snr)

# Generate y values
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y <- mvrnorm(mu = mu, Sigma = var*diag(n))

return(list(X = x, y = y, beta = b, Sigma = cov_mat, sigma = var))
}

Next, we will write a function for our model metrics. The only input we need
from our model is the estimated coefficients. Otherwise, all of the information
comes from the data we generate with the function we just wrote. We will
utilize this list format to extract the values needed for our formulas.

#' Return model metrics
#'
#' @param coef_est Vector with estimated coefficients
#' @param test_data Withheld test set (`simulate_data()` output)
#' @return Vector with relative test error (RTE) and proportion
#' of variance explained (PVE).
get_metrics <- function(coef_est, test_data) {

# Extract out values needed
coef_true <- test_data$beta
Sigma <- test_data$Sigma
var_y <- test_data$sigma

# Calculate relative test error
RTE <- (t(coef_est - coef_true) %*% Sigma %*%

(coef_est - coef_true) + var_y) /
var_y

# Calculate PVE
# Proportion of variance explained
PVE <- 1 - (t(coef_est - coef_true) %*% Sigma %*%

(coef_est - coef_true) + var_y) /
(var_y + t(coef_true %*% Sigma %*% coef_true))

return(c(RTE = RTE, PVE = PVE))
}

Next, we will write a function that takes in the given parameters, fits the
two models, and outputs the evaluation metrics. In this case, we will let the
parameters be a named vector that contains all the components needed for
the data simulation. We will also include an optional argument to set the
random seed. In the code below, we find the time it takes to fit each model
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using Sys.time(). This function finds the current system time. Therefore, we
can find the difference between them using the difftime() function. We also
make sure to format the lasso and ridge results in the same manner.

#' Model selection simulation
#'
#' @param params named vector containing all parameters needed for
#' data generation (rho, snr, n, p, s)
#' @param seed (optional) random seed to set before setting folds,
#' by default not used
#' @return Vector with parameter values, results
model_selection <- function(params, seed = NULL) {

# Extract out parameters
n <- params['n']
p <- params['p']
s <- params['s']
snr <- params['snr']
rho <- params['rho']

# Generate training and test data
train <- simulate_data(n, p, s, snr, rho)
test <- simulate_data(n, p, s, snr, rho)

# Set folds, if needed
if (!is.null(seed)){
set.seed(seed)

}
k <- 5
folds <- sample(1:k, nrow(train$X), replace=TRUE)

# Lasso model
start_lasso <- Sys.time()
lasso_cv <- cv.glmnet(train$X, train$y, nfolds = k, foldid = folds,

alpha = 1, family = "gaussian",
intercept=FALSE)

lasso_mod <- glmnet(train$X, train$y, lambda = lasso_cv$lambda.min,
alpha = 1, family = "gaussian", intercept=FALSE)

end_lasso <- Sys.time()

# Get lasso results
lasso_time <- as.numeric(difftime(end_lasso, start_lasso,

units = "secs"))
lasso_results <- c(lasso_time,
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get_metrics(coef(lasso_mod)[-1], test))
names(lasso_results) <- c("lasso_sec", "lasso_RTE", "lasso_PVE")

# Ridge model
start_ridge <- Sys.time()
ridge_cv <- cv.glmnet(train$X, train$y, nfolds = k, foldid = folds,

alpha = 0, family = "gaussian",
intercept=FALSE)

ridge_mod <- glmnet(train$X, train$y, lambda = ridge_cv$lambda.min,
alpha = 0, family = "gaussian", intercept=FALSE)

end_ridge <- Sys.time()

# Get ridge results
ridge_time <- as.numeric(difftime(end_ridge, start_ridge,

units = "secs"))
ridge_results <- c(ridge_time,

get_metrics(coef(ridge_mod)[-1], test))
names(ridge_results) <- c("ridge_sec", "ridge_RTE", "ridge_PVE")

# Full results
res <- c(n, p, s, snr, rho, lasso_results, ridge_results)

return(res)
}

19.3 Results
Now it’s time to run our simulation! We first need to find the combinations of
parameters we want to use in our simulation design. In our case, we will set
𝑛 = 500, 𝜌 = 0.35, and 𝑠 = 10. We will vary 𝑝 ∈ {50, 100} and the signal-to-
noise ratio 𝜈 ∈ {0.1, 0.5, 1.5}. We also want to run each possible combination
of parameters ten times so that we can average across the results. We use
the expand.grid() function to create a matrix that contains a row for each
simulation.

# Set up parameter grid
rho_grid <- c(0.35)
snr_grid <- c(0.1, 0.5, 1.5)
n_grid <- c(500)
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p_grid <- c(50, 100)
s_grid = c(10)
iter_grid <- 1:5
param_grid <- expand.grid(rho = rho_grid, snr = snr_grid, n = n_grid,

p = p_grid, s = s_grid, iter = iter_grid)

# convert to numeric
param_grid <- as.matrix(param_grid)
head(param_grid)
#> rho snr n p s iter
#> [1,] 0.35 0.1 500 50 10 1
#> [2,] 0.35 0.5 500 50 10 1
#> [3,] 0.35 1.5 500 50 10 1
#> [4,] 0.35 0.1 500 100 10 1
#> [5,] 0.35 0.5 500 100 10 1
#> [6,] 0.35 1.5 500 100 10 1

Recall that our main function took in a named vector that contained all needed
parameters. This allows us to use an apply() function to run our simulation.
In order to summarize by method, we pivot the results to a longer form with
a column for method.

# Run experiments
results <- apply(param_grid, 1, model_selection) %>% t()

# Convert to long data frame
results <- as.data.frame(results) %>%
pivot_longer(cols = starts_with(c("lasso", "ridge")),

names_to = c("method", ".value"), names_sep="_")

Finally, we summarize our results. For example, we can create a table with the
average time for each method grouped by the data dimensions. We observe
that ridge regression was slower on average than lasso.

avg_time <- results %>%
group_by(method, n, p) %>%
summarize(avg_seconds = round(mean(sec),3)) %>%
ungroup()

avg_time
#> # A tibble: 4 x 4
#> method n p avg_seconds
#> <chr> <dbl> <dbl> <dbl>
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#> 1 lasso 500 50 0.02
#> 2 lasso 500 100 0.038
#> 3 ridge 500 50 0.022
#> 4 ridge 500 100 0.042

We can also create summary plots of our evaluation metrics similar to Hastie,
Tibshirani, and Tibshirani (2020). To do so, we create one last function that
will create a plot of the relative test error and percentage of variance explained
across different signal-to-noise ratios. This allows us to regenerate this plot for
different parameter settings.

#' Generate RTE and PVE plots for a given set of parameters
#'
#' @param results Data frame with simulation results
#' @param n_input Number of observations
#' @param p_input Number of variables
#' @param s_input Sparsity level
#' @return ggplot object
generate_plot <- function(results, n_input, p_input, s_input) {

setting <- results %>%
filter(n == n_input, p == p_input, s == s_input) %>%
group_by(method, snr) %>%
summarize(mean_RTE = mean(RTE, na.rm = TRUE),

sd_RTE = sd(RTE, na.rm = TRUE),
mean_PVE = mean(PVE, na.rm = TRUE),
sd_PVE = sd(PVE, na.rm = TRUE))

rte_plot <- ggplot(setting) +
geom_point(aes(x = snr, y = mean_RTE, color = method)) +
geom_errorbar(aes(x = snr, ymin = mean_RTE - sd_RTE,

ymax = mean_RTE + sd_RTE, color = method),
alpha = 0.8, width = 0.2) +

geom_line(aes(x = snr, y = mean_RTE, color = method)) +
theme_bw() +
theme(legend.position = "bottom") +
labs(x = "SNR", y = "RTE", color = "")

pve_plot <- ggplot(setting) +
geom_point(aes(x = snr, y = mean_PVE, color = method)) +
geom_errorbar(aes(x = snr, ymin = mean_PVE - sd_PVE,

ymax = mean_PVE + sd_PVE, color = method),
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alpha = 0.8, width = 0.2) +
geom_line(aes(x = snr, y = mean_PVE, color = method)) +
theme_bw() +
theme(legend.position = "bottom") +
labs(x = "SNR", y = "PVE", color = "")

full_plot <- rte_plot + pve_plot

return(full_plot)
}
generate_plot(results, 500, 50, 10)
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20
Writing Efficient Code

When we talk about efficient code, we are talking about computational effi-
ciency or writing code that is fast to execute. For this topic, we need to peek
under the hood to consider how R is implementing our code in order to under-
stand what can slow down our code. We use the microbenchmark package
(Mersmann 2023) to time our code execution. For demonstration, we use a
subset of the pain dataset from the HDSinRdata package.

library(microbenchmark)
library(HDSinRdata)
library(tidyverse)

data(pain)
pain <- pain %>%
select(-c(BMI, GH_MENTAL_SCORE, GH_PHYSICAL_SCORE,

PROMIS_PAIN_BEHAVIOR)) %>%
na.omit()

The function Sys.time() returns the current system time. This allows us to
find the net time required to execute a chunk of code. For example, the follow-
ing code finds how long it takes to loop through the data to find the number
of people who had an improvement in pain.

start_time <- Sys.time()
num <- 0
for (i in 1:nrow(pain)){
if (pain$PAIN_INTENSITY_AVERAGE[i] <=

pain$PAIN_INTENSITY_AVERAGE.FOLLOW_UP[i]){
num <- num + 1

}
}
end_time <- Sys.time()
end_time - start_time
#> Time difference of 0.0201 secs

315
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Using Sys.time() is a simple approach to time our code. The function mi-
crobenchmark() from the microbenchmark package allows us to replicate
an expression multiple times to get an average execution time. We can pass
multiple expressions to this function and specify a unit of measurement and
number of times to replicate each expression.

microbenchmark(first expression, second expression, units ="ms",
times = 10)

For example, we time the same expression as previously using this package.
This time we get some summary statistics in milliseconds. We used the default
100 times to replicate this expression.

microbenchmark( pain_inc = {
num <- 0
for (i in 1:nrow(pain)){
if (pain$PAIN_INTENSITY_AVERAGE[i] <=

pain$PAIN_INTENSITY_AVERAGE.FOLLOW_UP[i]){
num <- num + 1

}
}

}, unit = "ms")
#> Warning in microbenchmark(pain_inc = {: less accurate nanosecond

times↪

#> to avoid potential integer overflows
#> Unit: milliseconds
#> expr min lq mean median uq max neval
#> pain_inc 15.5 15.9 17 16.5 17.6 24 100

20.1 Use Fast and Vectorized Functions
R is known as a slower programming language. In part, R sacrifices computa-
tion time to make it more welcoming to new programmers. However, not all
of R is actually written in R. Many functions that are in base R are actually
written in C or Fortran. These functions are significantly faster than if we
wrote them ourselves. When possible, we should use base R functions rather
than writing our own. Let’s take a look at the difference in time when we
write our own summation function compared to using the sum() function.

my_sum <- function(x){
out <- 0
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for (i in 1:length(x)){
out <- out + x[i]

}
return(out)

}

x <- 1:100000
microbenchmark(sum_function = my_sum(x),

builtin_sum = sum(x),
unit = "ms")

#> Unit: milliseconds
#> expr min lq mean median uq max
#> sum_function 2.182061 2.210966 2.267494 2.228617 2.301207 3.60119
#> builtin_sum 0.000041 0.000041 0.000252 0.000082 0.000164 0.00279
#> neval
#> 100
#> 100

This also simplifies our code to a single line. Looking back at our first example,
we can also simplify our code. We did not need to loop through our data.
Instead, we should use a vectorized approach that checks for pain improvement
across all observations and then sum up the TRUE/FALSE values.

microbenchmark({
vector_pain = sum(pain$PAIN_INTENSITY_AVERAGE <=

pain$PAIN_INTENSITY_AVERAGE.FOLLOW_UP)
}, unit = "ms")
#> Unit: milliseconds
#>

expr↪

#> { vector_pain = sum(pain$PAIN_INTENSITY_AVERAGE <=
pain$PAIN_INTENSITY_AVERAGE.FOLLOW_UP) }↪

#> min lq mean median uq max neval
#> 0.0146 0.0161 0.0174 0.0169 0.0173 0.0467 100

This is much faster. Loops are notoriously slow in R so you often hear the
advice to avoid loops. Using apply functions like apply() and sapply() are
loop-hiding functions. Using these functions instead of an explicit loop doesn’t
improve the efficiency of our code except that by using these functions we often
simplify our code as a byproduct of rewriting our code.

The true functions that can improve efficiency over loops are vectorized func-
tions, which can be evaluated on a vector of values. Vectorizing our code
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means that we are thinking about a vector approach rather than computing
something for each element of the vector and looping through these values. A
vectorized function returns output that is the same dimensions as the input
and operates on these elements in an efficient manner.

The following code chunk shows a simple example of comparing taking the
square root of each individual element or calling the sqrt() function, which
is a vectorized function. Vectorized functions still have to operate on each
element, but that loop is often written in C or Fortran rather than R making
it significantly faster, so this is a special case where we can utilize the speed
of some functions.

microbenchmark(loop_sqrt = {
for (i in 1:length(x)){
x[i] <- sqrt(x[i])

}
}, sqrt = sqrt(x), unit = "ms")

#> Unit: milliseconds
#> expr min lq mean median uq max neval
#> loop_sqrt 4.41 4.448 4.585 4.477 4.586 6.95 100
#> sqrt 0.10 0.137 0.151 0.148 0.161 0.22 100

20.1.1 Practice Question
First, read the documentation of the function tapply(). This is another func-
tion in the apply function library that was not covered in Chapter 17. Rewrite
the following code without using a loop using the tapply() function. Would
you expect this approach to be faster? Why or why not?

mean_pain <- c()
pat_races <- unique(pain$PAT_RACE)

for (r in pat_races){
mean_pain[r] <- mean(pain$PAIN_INTENSITY_AVERAGE[pain$PAT_RACE ==
r])↪

}
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20.2 Avoid Copies and Duplicates
Another aspect of our programs that can slow down our operations is any time
we need to create a large object. Look at the following code. First, we create
a matrix m. We then create a matrix n that is equal to m. Last, we update
n by taking the logarithm of all elements plus one, differentiating it from m.
R creates copies upon modification. This means that when we initialize n we
have not actually created a second matrix in memory. Instead, we have two
names for the same matrix. On the third line, we want to update n, so we
need to actually create a second matrix that is different from m.

m <- matrix(rpois(100000, 6), ncol=1000)
n <- m
n <- log(n + 1)

This is different from the subsequent code which updates m itself. In this case,
R can modify the matrix in place by going through each element and updating
its value rather than creating a new matrix. As the size of our data grows,
creating copies can be expensive. Imagine, m being a large genetic dataset
with RNA-sequencing data. First, this object may take up a lot of memory,
so creating a copy may mean we could run out of memory. Second, copying
over all this information is expensive.

m <- log(m + 1)

Let’s consider another case. In the following code, we have two functions that
both find the proportion of people within 1, 2, and $>$2 standard deviations
from the mean for one of the PROMIS instrument variables. When we input
pain as an argument to the first function, we do not create a copy of it since
we haven’t modified the data frame. However, once we create a new column,
this means that we have to copy the full data frame. The second function
instead takes in a single column, requiring us to copy only this information.
The difference in execution time shows an edge to the second method, but the
difference is small. This indicates that actually computing this new column
and finding the proportions takes more time than the duplication.

code_promis1 <- function(df){
# create new column with categories
df$PAIN_PHYSICAL_FUNCTION_CUT <- case_when(
abs(df$PROMIS_PHYSICAL_FUNCTION-50) <= 10 ~ "<= 1SD",
abs(df$PROMIS_PHYSICAL_FUNCTION-50) <= 20 ~ "<= 2 SD",



320 20 Writing Efficient Code

TRUE ~ "> 2SD")

# get proportions
res <- prop.table(table(df$PAIN_PHYSICAL_FUNCTION_CUT))
return(res)

}

code_promis2 <- function(v){
# create new column with categories
v <- case_when(
abs(v-50) <= 10 ~ "<= 1SD",
abs(v-50) <= 20 ~ "<= 2 SD",
TRUE ~ "> 2SD")

# get proportions
res <- prop.table(table(v))
return(res)

}

microbenchmark(code_promis1(pain),
code_promis2(pain$PROMIS_PHYSICAL_FUNCTION),
unit = "ms")

#> Unit: milliseconds
#> expr min lq mean median
#> code_promis1(pain) 0.668 0.707 0.870 0.730
#> code_promis2(pain$PROMIS_PHYSICAL_FUNCTION) 0.626 0.675 0.736

0.692↪

#> uq max neval
#> 0.757 6.24 100
#> 0.710 3.27 100

Another time when we create copies of objects is when we modify their size.
Functions like cbind(), rbind(), and c() create a new object that needs to copy
over information to create one vector, matrix, or data frame. If we know the
size of the final vector, matrix, or data frame, we can pre-allocate that space
and fill in values. This means that the computer won’t have to repeatedly find
more space. For example, take a look at the two ways to simulate a random
walk in one dimension in the following code chunk. In the first method, the
length of the vector v changes on each iteration of the loop, whereas in the
second v always has length n.

rw1 <- function(n){
v <- c(0)
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for (i in 2:n){
v[i] <- v[i-1] + rbinom(1, 1, 0.5)

}
return(v)

}

rw2 <- function(n){
v <- rep(0, n)
for (i in 2:n){
v[i] <- v[i-1] + rbinom(1, 1, 0.5)

}
}

microbenchmark(rw1(10000), rw2(10000), unit="ms")
#> Unit: milliseconds
#> expr min lq mean median uq max neval
#> rw1(10000) 5.13 5.27 5.68 5.34 5.58 10.86 100
#> rw2(10000) 4.25 4.35 4.62 4.39 4.46 7.15 100

This also works for data frames or matrices. In the following code chunk, we
generate a random matrix in three ways. The first creates the matrix with a
single line, the second initializes an empty matrix and then fills in each row,
and the last dynamically updates the size of the matrix on each iteration.

random_mat1 <- function(n){
m <- matrix(sample(1:3, n^2, replace = TRUE), nrow = n)
return(m)

}

random_mat2 <- function(n){
m <- matrix(nrow = n, ncol = n)
for (i in 1:n){
m[i,] <- sample(1:3, n, replace = TRUE)

}
}

random_mat3 <- function(n){
m <- NULL
for (i in 1:n){
m <- rbind(m, sample(1:3, n, replace = TRUE))

}
return(m)

}
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microbenchmark(random_mat1(100),
random_mat2(100),
random_mat3(100),
unit = "ms")

#> Unit: milliseconds
#> expr min lq mean median uq max neval
#> random_mat1(100) 0.229 0.244 0.316 0.256 0.265 2.14 100
#> random_mat2(100) 0.499 0.519 0.673 0.542 0.609 3.59 100
#> random_mat3(100) 1.075 1.138 1.627 1.205 1.388 10.76 100

This demonstrates that if you need to update the values of a vector, matrix,
or data frame, try to do as much reassignment at once. For example, changing
the whole column at a time is better than changing the individual values. This
avoids additional copies.

20.2.1 Practice Question
The following code fits a linear model for each racial group and records the
coefficient. Rewrite this code so that we pre-allocate the results vector and use
the microbenchmark to compare the efficiency between the two approaches.

coefs <- c()
pat_races <- unique(pain$PAT_RACE)
for (r in pat_races){
df <- pain[pain$PAT_RACE == r, ]
if (nrow(df) > 3){
new_coef <- lm(PROMIS_DEPRESSION ~ PROMIS_ANXIETY,

data = df)$coefficients[2]
coefs <- c(coefs, new_coef)

}
}

20.3 Parallel Programming
Another approach to make our code more efficient is using parallel processing.
When we run loops in R, only one iteration is run at a time. For example,
the following code runs a random walk 100 times in serial. Parallel processing
allows us to execute multiple calls to this function at the same time. This
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is done by running these processes on separate cores, or processors, on your
machine. For example, if we had six cores available, we would be able to run
1/6 of the replications on each processor and reduce our overall computation
time. The parallel package (R Core Team 2024) contains functions to imple-
ment parallel processing on different operating systems. Unfortunately, this
functionality is often not supported within RStudio and is not covered in this
book. We recommend using the mclapply() function from the parallel pack-
age to implement parallel processing using forking. This does not work on
Windows but is much simpler to implement. For parallel processing on Win-
dows, we recommend looking into the socket approach using the parLapply()
function in the parallel package.

replicate(100, rw1(1000))

20.4 Exercises
1. The following code chunk includes four attempts to create a new

column LOWER_BACK to the pain data. Note that the second and third
attempts are vectorized, whereas the first and fourth are not. Time
each approach and order the approaches from fastest to slowest.

# Attempt 1: loop
pain$LOWER_BACK <- vector(mode="logical", length=nrow(pain))
for (i in 1:nrow(pain)) { # for every row
if ((pain$X218[i] == 1) | (pain$X219[i] == 1)) {
pain$LOWER_BACK[i] <- TRUE

} else {
pain$LOWER_BACK[i] <- FALSE

}
}

# Attempt 2: logic
pain$LOWER_BACK <- ((pain$X218[i] == 1) |

(pain$X219[i] == 1))

# Attempt 3: which
pain$LOWER_BACK <- FALSE
true_ind <- which((pain$X218[i] == 1) | (pain$X219[i] == 1))
pain$LOWER_BACK[true_ind] <- TRUE
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# Attempt 4: apply
back_pain <- function(x){
if((x['X218'] == 1) | (x['X219'] == 1)){
return(TRUE)
}

return(FALSE)
}
pain$BACK_PAIN <- apply(pain, 1, back_pain)

2. Examine the following code and determine what is being computed.
Then, rewrite the code to make it more efficient. Use the mi-
crobenchmark package to compare the execution time, and ex-
plain why your approach is more efficient.

n <- 100000
x1 <- rnorm(n, 10, 1)
x2 <- rbinom(n, 1, 0.2)
y <- numeric(0)

for (i in 1:n){
if (x2[i] == 1){
y[i] <- rnorm(1,2 *x1[i], 0.7)

} else{
y[i] <- rnorm(1, 1+3*x1[i], 0.2)

}
}
df <- data.frame(x1 = x1, x2 = x2, y = y)

3. Suppose we want to find the five most frequently reported pain
regions by racial group. Code your solution (a) using at least one
loop and (b) pivoting the data on the body region columns and
then using dplyr functions to summarize. Compare the efficiency
of both approaches.



Part VI

Extra Topics





21
Expanding Your R Skills

Throughout this book, we have covered some popular packages as well as many
of the specific functions from these packages. However, it would be impossible
to cover all of the packages, functions, and options that are available in R. In
this chapter, we talk about how to use new packages, interpret error messages,
debugging, and overall good programming practices to help you take your R
programming to the next level.

21.1 Reading Documentation for New Packages
As you start to apply the tools from this book to your own work or in new
settings, you may need to install and use new packages or encounter some
unexpected errors. Practicing reading package documentation and responding
to error messages helps you expand your R skills beyond the topics covered
here. We demonstrate these skills using the stringr package (Wickham 2022),
which is a package that is part of the tidyverse and has several functions for
dealing with text data.

library(tidyverse)
library(HDSinRdata)

Every published package has a CRAN website. This website contains a ref-
erence manual that contains the documentation for the functions and data
available in the package. Most often, the website also includes useful vignettes
that give examples of how to use the functions in the package. The site also
tells you what the requirements for using the package are, who the authors of
the package are, and when the package was last updated. For example, take
a look at the CRAN site for stringr1 and read the vignette “Introduction to
String R”2.

We use the stringr package to demonstrate cleaning up text related to a

1https://cran.r-project.org/web/packages/stringr/index.html
2https://cran.r-project.org/web/packages/stringr/vignettes/stringr.html
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PubMed search query for a systematic review. An example search query is
given in the following code chunk and is taken from Gue et al. (2021). Our
first goal is to extract the actual search query from the text along with all the
terms used in the query. We can assume that the search query is either fully
contained in parentheses or is a sequence of parenthetical phrases connected
with AND or OR. Our goal is to extract the search query as well as all the
individual search terms used in the query, but we have to get there in a series
of steps.

sample_str <- " A systematic search will be performed in PubMed,
Embase, and the Cochrane Library, using the following search query:
('out-of-hospital cardiac arrest' OR 'OHCA') AND ('MIRACLE 2' OR
'OHCA' OR 'CAHP' OR 'C-GRAPH' OR 'SOFA' OR 'APACHE' OR 'SAPS’ OR
'SWAP' OR 'TTM')."

The first thing we want to do with the text is clean up the white space by
removing any trailing, leading, or repeated spaces. In our example, the string
starts with a trailing space and there are also multiple spaces right before the
search query. Searching for “white space” in the stringr reference manual, we
find the str_trim() and str_squish() functions. Read the documentation for
these two functions. You should find that str_squish() is the function we are
looking for and that it takes a single argument.

sample_str <- str_squish(sample_str)
sample_str
#> [1] "A systematic search will be performed in PubMed, Embase, and

the Cochrane Library, using the following search query:
('out-of-hospital cardiac arrest' OR 'OHCA') AND ('MIRACLE 2' OR
'OHCA' OR 'CAHP' OR 'C-GRAPH' OR 'SOFA' OR 'APACHE' OR 'SAPS’ OR
'SWAP' OR 'TTM')."

↪

↪

↪

↪

21.2 Trying Simple Examples
The premise of testing a function on a single string is a good example of
starting with a simple case. Rather than applying your function to your full
dataset right away, you want to first make sure that you understand how
it works on a simple example and on which you can anticipate what the
outcome should look like. Our next task is to split the text into words and
store this as a character vector. Read the documentation to determine why
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we use the str_split_1() function. We then double-check that the returned
result is indeed a vector and print the result.

sample_str_words <- str_split_1(sample_str, " ")
class(sample_str_words)
#> [1] "character"
sample_str_words
#> [1] "A" "systematic" "search"
#> [4] "will" "be" "performed"
#> [7] "in" "PubMed," "Embase,"
#> [10] "and" "the" "Cochrane"
#> [13] "Library," "using" "the"
#> [16] "following" "search" "query:"
#> [19] "('out-of-hospital" "cardiac" "arrest'"
#> [22] "OR" "'OHCA')" "AND"
#> [25] "('MIRACLE" "2'" "OR"
#> [28] "'OHCA'" "OR" "'CAHP'"
#> [31] "OR" "'C-GRAPH'" "OR"
#> [34] "'SOFA'" "OR" "'APACHE'"
#> [37] "OR" "'SAPS’" "OR"
#> [40] "'SWAP'" "OR" "'TTM')."

We now want to identify words in this vector that have starting and/or end
parentheses. The function grepl() takes in a character vector x and a pattern
to search for. It returns a logical vector for whether or not each element of x
has a match for that pattern.

grepl(sample_str_words, ")")
#> Warning in grepl(sample_str_words, ")"): argument 'pattern' has

length↪

#> > 1 and only the first element will be used
#> [1] FALSE

That didn’t match what we expected. We expected to have multiple
TRUE/FALSE values outputted, one for each word. Let’s read the documen-
tation again.

21.3 Deciphering Error Messages and Warnings
The previous warning message gives us a good clue for what went wrong. It
says that the inputted pattern has length >1. However, the pattern we gave
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it is a single character. In fact, we specified the arguments in the wrong order.
Let’s try again. This time we specify x and pattern.

grepl(x = sample_str_words, pattern = ")")
#> [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

FALSE↪

#> [12] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
FALSE↪

#> [23] TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
FALSE↪

#> [34] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE

That fixed it. However, it won’t work if we change that to an opening paren-
thesis. Try it out for yourself to see this. The error message says that it is
looking for an end parenthesis. In this case, the documentation does not help
us. Let’s try searching “stringr find start parentheses” using an online search
engine. Our search results indicate that we may need to use backslashes to tell
R to read the parentheses literally rather than as a special character used in
a regular expression (a technique often referred to as “escaping” a character).
Investigating the reason for an error, including using online material, is an
important skill for a programmer to have.

grepl(x = sample_str_words, pattern = "\\(")
#> [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

FALSE↪

#> [12] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE
FALSE↪

#> [23] FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
FALSE↪

#> [34] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

When a function doesn’t return what we expect it to, it is a good idea to first
test whether the arguments we gave it match what we expect, then re-read the
documentation, and then look for other resources for help. For example, we
could check that sample_str_words is indeed a character vector, then re-read
the stringr documentation, and then search our problem.

21.3.1 Debugging Code
The following code is supposed to extract the search query from the text as
well as find the individual search terms used in the query. However, the code
is incorrect. You can try out two test strings given to see why the code output
is wrong. Practice reading through the code to understand what it is trying
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to do. The comments are there to help explain the steps, but you may also
want to print the output to figure out what it is doing.

sample_strA <- " A systematic search will be performed in PubMed,
Embase, and the Cochrane Library, using the following search query:
('out-of-hospital cardiac arrest' OR 'OHCA') AND ('MIRACLE 2' OR
'OHCA' OR 'CAHP' OR 'C-GRAPH' OR 'SOFA' OR 'APACHE' OR 'SAPS' OR
'SWAP' OR 'TTM')."

sample_strB <- "Searches will be conducted in MEDLINE via PubMed, Web
of Science, Scopus and Embase. The following search strategy will be
used:(child OR infant OR preschool child OR preschool children OR
preschooler OR pre-school child OR pre-school children OR pre school
child OR pre school children OR pre-schooler OR pre schooler OR
children OR adolescent OR adolescents)AND(attention deficit disorder
with hyperactivity OR ADHD OR attention deficit disorder OR ADD OR
hyperkinetic disorder OR minimal brain disorder) Submitted "

sample_str <- sample_strB

# separate parentheses, remove extra white space, and split into words
sample_str <- str_replace(sample_str, "\\)", " \\) ")
sample_str <- str_replace(sample_str, "\\(", " \\( ")
sample_str <- str_squish(sample_str)
sample_str_words <- str_split_1(sample_str, " ")

# find indices with parentheses
end_ps <- grepl(x = sample_str_words, pattern = "\\)")
start_ps <- grepl(x = sample_str_words, pattern = "\\(")

# find words between first and last parentheses
search_query <- sample_str_words[which(end_ps)[1]:which(start_ps)[1]]
search_query <- paste(search_query, collapse=" ")
search_query
#> [1] ") adolescents OR adolescent OR children OR schooler pre OR

pre-schooler OR children school pre OR child school pre OR
children pre-school OR child pre-school OR preschooler OR children
preschool OR child preschool OR infant OR child ("

↪

↪

↪

# find search terms
search_terms <- str_replace_all(search_query, "\\)", "")
search_terms <- str_replace_all(search_query, "\\(", "")
sample_terms <- str_squish(search_query)
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search_terms <- str_split_1(search_terms, " AND | OR ")
search_terms
#> [1] ") adolescents" "adolescent" "children"
#> [4] "schooler pre" "pre-schooler" "children school

pre"↪

#> [7] "child school pre" "children pre-school" "child pre-school"
↪

#> [10] "preschooler" "children preschool" "child preschool"
↪

#> [13] "infant" "child "

21.4 General Programming Tips
As you write more complex code and functions, we want to focus on prac-
ticing good programming principles. This helps when you need to share or
update your code or when you inevitably run into errors or unexpected be-
havior. Following are some general programming tips and how they relate to
communication and debugging.

1. Consistent Naming. Use consistent and informative names for
your objects and functions. For example, you can see that within
this text we have only used lowercase letters, underscores (_), and
occasionally numbers in our names. These names should also be
informative and unique. This makes it easier to check for typos or
duplicate names when debugging. When debugging, check that you
haven’t used the same name for different objects or different names
for the same object. You can do this by using the ls() function to
find all current objects or by checking your environment pane.

# Recommended
ages <- c(65, 33, 27, 88)
age_mean <- mean(ages)

# Not recommended
x <- c(65, 33, 27, 88)
x1 <- mean(ages)
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2. Make Your Code Readable. Readable code requires several ele-
ments of communication. As with writing an essay, we need to break
our code into digestible and structured pieces. First, code should be
broken into blocks, using white space to separate steps, and should
use correct levels of indentation (one extra level of indentation for
each new loop, if/else statement, or function). This means that clos-
ing curly braces should be on their own line indicating the end of
the block. This makes it easy to check that all parentheses (), brack-
ets [], and curly braces {} match. Additionally, you should use line
breaks to avoid going over 80 characters on a single line of code.
RStudio has an option to re-format or re-indent your code under
the Code tab.

Besides the structure of your code, writing helpful comments and
function documentation is key for making your code readable. A
good rule of thumb is to write comments for yourself a year from
now; you might remember the project goal, but you won’t remember
what x represents. You likely do not need a comment for every line
of code but you might need comments to explain the overall goal of
a code block or to clarify lines that aren’t self-explanatory.

In the following code, we have not used indentation. This makes it
hard to see the structure of the code such as what lines of code are
in the loop or if statement. The function does not have any roxygen
documentation. However, we have added too many comments. The
comments here are repetitive with the code. Last, we named the
function unique(), which is already a function in R.

# Not recommended
unique <- function(x){
y <- c() # results
if (length(x) == 0){ # check length 0
return(NULL)} # return NULL
for(i in length(x)){ # loop through x
if(!(x[i] %in% y)){ # check if x[i] in y
y <- c(y, x[i]) }} # add x[i] to y
return(y) # return y
}

We rewrite the function addressing these comments. The end result
is much easier to read.
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#' Find unique elements of a vector
#'
#' @param x vector
#' @return new vector with duplicates removed
own_unique <- function(x){

# check for empty vector
if (length(x) == 0){
return(NULL)

}

# otherwise y will be unique values
y <- c()

for(i in 1:length(x)){
# if value of x is not in y, we add it
if(!(x[i] %in% y)){

y <- c(y, x[i])
}

}

return(y)
}

3. Don’t Repeat Yourself. Repeating code increases the likelihood
of errors. Additionally, it makes it hard to update our code later on.
When we find ourselves repeating code, we should use a function.
If you find yourself repeating constants, you should define these
values as an object. The subsequent code uses a single line of code
to convert categorical variables to factors and stores a vector of
which columns are categorical.

dry_df <- data.frame(age = ages,
tb = c(1, 0, 0, 0),
heart_rate = c(60, 82, 76, 72),
gender = c("Female", "Male", "Nonbinary",

"Female"))

# convert factor variables
cat_vars <- c("tb", "gender")
dry_df[cat_vars] <- lapply(dry_df[cat_vars], factor)
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4. Practice Reading Documentation. Whenever you are using a
new function, you should read the documentation first. When de-
bugging, you should check that the input arguments to a function
match what is expected and check the examples. Reading these ex-
amples also helps when writing your own documentation so you can
better understand how to communicate to your audience.

5. Start Simple, Build Up. If we write a large amount of code at
once and then it fails to work, it’s hard to understand what went
wrong. Instead, we should build up our code or functions in small
steps and check it after each step. When it comes to testing code,
a good mantra is test early and test often. So, try to avoid writing
too much code before running and checking that the results match
what you expect. If you do end up writing a big chunk of code, you
can localize your error by checking the values of objects at different
points.

6. Get Comfortable Asking for Help. In software engineering, it’s
a known tip to have a rubber ducky (or other adorable object) at
your desk to talk through your code. Having to verbalize and ex-
plain your approach can be really helpful for debugging. R’s error
messages can sometimes hint at what the error might stem from, but
they are not always direct. Searching for error messages you don’t
understand might give you a better understanding of the problem.

21.5 Exercises
These exercises focus on reading function documentation and debugging.

1. Suppose we want to replace the words “Thank you” in the following
string with the word “Thanks”. Why does the following code fail?
How can we correct it?

string <- "Congratulations on finishing the book!
Thank you for reading it."
str_sub(string, c(35, 42)) <- "Thanks"
string
#> [1] "Congratulations on finishing the bThanks"
#> [2] "Congratulations on finishing the book! \nTThanks"

2. The subsequent code uses the NHANESsample data from the HDSin-
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Rdata package. The goal of the code is to plot the worst diastolic
blood pressure reading against the worst systolic blood pressure
reading for each patient, colored by hypertension status. However,
the code currently generates an error message. What is wrong with
the code? There are four errors for you to identify and fix.

data(NHANESsample)

nhanes_df <- NHANESsample %>%
mutate(worst_DBP = max(DBP1, DBP2, DBP3, DBP4),

worst_SBP = max(SBP1, SBP2, SBP3, SBP4))

ggplot() %>%
geom_point(data = nhanes_df,

aes(x = worst_SBP, y = worst_DBP),
color = HYP)

3. The following code uses the breastcancer data from the HDSin-
Rdata package. The goal is to create a logistic regression model
for whether or not the diagnosis is benign or malignant and then
to create a calibration plot for the model, following the code from
Chapter 14. Debug and fix the code. Hint: there are three separate
errors.

data(breastcancer)

model <- glm(diagnosis ~ smoothness_worst + symmetry_mean +
texture_se + radius_mean,

data = breastcancer, family = binomial)

pred_probs <- predict(model)

num_cuts <- 10
calib_data <- data.frame(prob = pred_probs,

bin = cut(pred_probs, breaks = num_cuts),
class = mod_start$y)

calib_data <- calib_data %>%
group_by(bin) %>%
summarize(observed = sum(class)/n(),

expected = sum(prob)/n(),
se = sqrt(observed * (1 - observed) / n()))
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calib_data

ggplot(calib_data) +
geom_abline(intercept = 0, slope = 1, color = "red") +
geom_errorbar(aes(x = expected, ymin = observed - 1.96 *

se,↪

ymax = observed + 1.96 * se),
color = "black", width = .01)+

geom_point(aes(x = expected, y = observed)) +
labs(x="Expected Proportion", y="Observed Proportion") +
theme_minimal()
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Writing Reports in Quarto

This chapter introduces you to Quarto, which is a document format that
combines Markdown text with code. Writing in Quarto helps you write repro-
ducible code and create polished reports to present your analyses. Quarto is
similar to R Markdown but is compatible with other programming languages
and incorporates some new features that make it easier to write nice reports.
If you already use R Markdown, it’s easy to transition to Quarto.

library(tidyverse)
library(HDSinRdata)
library(kableExtra)
library(gt)

data(NHANESsample)

22.1 Starting a Quarto File
To create a Quarto file, you need to have RStudio installed as an application.
For more recent versions of RStudio, Quarto is already installed. If you have an
older version, you can install Quarto1. We also recommend the kableExtra
package (Zhu 2021) for formatting your tables.

Now that you have these packages downloaded, opening a new Quarto file is
very similar to opening a new R file, which was covered in Chapter 1. Just
like opening a new R file, you’ll want to go to File -> New File, but instead of
selecting ‘R Script’, you’ll now select ‘Quarto Document…’. This should bring
up a window that looks like Figure 22.1.

First, enter a title of your choosing for your report and type your name in
the Author field (note that you can always change these later) and then click
on OK. You should also choose which type of file you would like to generate,
a PDF, HTML, or WORD document. This opens an Quarto file that has

1https://quarto.org/docs/get-started/
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Figure 22.1: Creating a New R Quarto Document.

the extension .qmd. Make sure to save this file with a suitable name in your
desired location on your computer by selecting File -> Save, and then you’re
ready to start writing your report! Your file should now look like Figure 22.2.

At the top of this pane is a toggle between source and visual mode. In visual
mode, we can see that we have a text toolbar including options to bold text
or add a list. If we switch to source mode, our text reveals the underlying
Markdown in Figure 22.3 and the toolbar disappears. This chapter focuses
on teaching you to edit in source mode, but you can always switch to visual
mode if you prefer.

We write all of the text and code that we would like to include in your report
in this .qmd file, and then produce a nicely formatted report from this file
by ‘rendering’ the file. We can either render to HTML, PDF, or WORD by
clicking on the Render button from the toolbar at the top of the
page. To update our format from PDF, we change the text in the top block
to format: html or format: word.
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Figure 22.2: A New Quarto Document.

Figure 22.3: Source Mode.
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22.1.1 Adding Code Chunks
Each of the darker gray rectangles is called a code chunk. All of the code used
to generate your report goes in these chunks, and all of your text writing goes
outside of them. Each code chunk starts with ```{r} and ends with ```. To
create a chunk, you can

• click on this green “add chunk” symbol in the toolbar at the top of
the page,

• type ```{r} and ```, or

• use the keyboard shortcut Ctrl + Alt + I (Cmd + Option + I on
Macs).

To run the code in a chunk, you can either use the keyboard shortcut Ctrl
+ Enter (Cmd + Return on Mac), or you can use one of the following

buttons at the top right of the chunks: runs all chunks above the current

chunk, and runs the current chunk.

22.1.2 Customizing Chunks
You can specify whether you want to include the code and/or its various
output in your final report by adding the following commands, preceded by
#|, at the top of the code chunk:

• include: false makes it so that neither code nor its output appears in your
report.

• echo: false makes it so that the output of the code but not the code itself
appears in your report.

• message: false, warning: false, and error: false make it so that messages,
warnings, and errors (respectively) that are generated from the code in the
chunk won’t appear in your report.

Here we can also specify a label for our code chunk. For example, if we wanted
to include a chunk that displayed our code but did not execute it, we could
include the following.

```{r}
#| label: example-chunk
#| echo: true
#| eval: false

x <- c(1,2,3)
```
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To apply the same options to all chunks in the document at once, you can
add them to the first chunk at the very top of your Quarto that has the label
label: setup using the knitr::opts_chunk$set() function. These are called
the global settings. For example, using the following code for your first code
chunk ensures that none of the errors, warnings, or messages from any of the
code chunks appear in your final report. It is also good practice to load all the
packages you are using for your report within this first code chunk using the
library() function. For example, we load the tidyverse and HDSinRdata
packages.

```{r}
|# label: setup
|# include: false
knitr::opts_chunk$set(echo = TRUE, warning = FALSE,
error = FALSE, echo = FALSE)
library(tidyverse)
library(HDSinRdata)
```

If you want to display the code for your report in a code appendix, you can
easily do this by creating an empty code chunk at the end of your .qmd file
that looks like the following. This finds all other chunks and displays the code.

```{r ref.label = knitr::all_labels()}
#| echo: true
#| eval: false
```

22.2 Formatting Text in Markdown
To add text to your report, you can simply type directly into the Quarto
file, between the code chunks. This code is formatted using Markdown, which
allows us to specify how to format and display the text when it is knit. For
example, adding a single asterisk * on either side of some text italicizes it,
while adding a double asterisk ** on either side of text makes it bold. To
indicate code, you can use backticks `.
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regular text regular text

*italicized text* italicized text

**bold text** bold text

`code text` code text

To create headers and sections, you can add the # symbol in front of your text.
Adding more of these symbols makes the headers smaller, which is useful for
making sub-headers (see Figure 22.4).

# Header

## Smaller Header

### Even Smaller Header

Figure 22.4: Example Header Sizes.
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You can also add links [text](www.example.com) and images ![alt
text](#fig-label image.png). In the latter example, fig-label becomes the
label of the image we can use to cross-reference it, while image.png is the
image file name (see Figure 22.5).

Example link.2

Figure 22.5: Example Image.

The Markdown Guide3 has a great cheat sheet4 as well as more resources for
formatting Markdown text.

You can also have inline R code by using single backticks around your code
`{r} max(c(1,2,3))`. The code must start with r to be run when knit. This
allows you to reference variables in your text. For example, we could display
the variance of a column in our data without having to copy the value over
`{r} round(var(cars$speed),2)`.

22.3 Formatting Figures and Tables
Often, you’ll want to include figures generated by your code in your report,
and you can customize these figures by changing the chunk options for the
chunks that produce them. To change the size of a figure, you can add in the
chunk option fig-width: 3 with your desired size in inches. To add a nice
caption to a figure in your report, you can add fig-cap : 'Your Desired
Caption.' option. To name a figure, you want to start your label with fig-
such as fig-myfigure.

By default, the figures generated by your code chunks are allowed to ‘float’
in Quarto. This means that the figures might move away from where they
were coded or referenced in the final report. To prevent this behavior, you can

2https://alicepaul.github.io/health-data-science-using-r/
3https://www.markdownguide.org/
4https://www.markdownguide.org/cheat-sheet/

https://alicepaul.github.io/health-data-science-using-r/
https://www.markdownguide.org/
https://www.markdownguide.org/cheat-sheet/
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customize the chunk that contains the code to produce the figure by adding
fig-pos : 'H' to that chunk’s options. If you want to prevent floating for
all figures, add fig-pos : 'H' to the first code chunk in the file (the one
that starts with the knitr::opts_chunk$set() function). Figure 22.6 shows
the resulting figure.

```{r}
#| label: fig-myfigure
#| fig-width: 3
#| fig-pos: "H"
#| fig-cap: "Blood Lead Level by Education"

data(NHANESsample)
ggplot(subset(NHANESsample, !is.na(EDUCATION))) +
geom_boxplot(aes(x = EDUCATION, y = log(LEAD)), fill = 'lightblue') +
theme_bw() +
labs(y = "Log Blood Lead Level") +
scale_x_discrete("Education")
```

Figure 22.6

If you want to make data frames, matrices, or tables from your raw R output
more polished and aesthetically pleasing, you can use the gt and kableExtra
packages. Be sure to load the package you are using to the code chunk at the
top of your Quarto file that contains all of your libraries.

To demonstrate the abilities of these packages, let’s suppose that we wanted
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Table 22.1

NHANESsample %>%
select(AGE, SEX, EDUCATION, INCOME, LEAD) %>%
head()

#> AGE SEX EDUCATION INCOME LEAD
#> 1 77 Male MoreThanHS 5.00 5.0
#> 2 49 Male MoreThanHS 5.00 1.6
#> 3 37 Male MoreThanHS 4.93 2.4
#> 4 70 Male LessThanHS 1.07 1.6
#> 5 81 Male LessThanHS 2.67 5.5
#> 6 38 Female MoreThanHS 4.52 1.5

to display the head of the first few columns of the NHANESsample data from
the HDSinRdata package. The following code produces the corresponding
output in the knitted pdf report. You can see in Table 22.1 that it essentially
just copies the raw output from R, which is rather messy.

We use the kable() and kable_styling() functions from the kableExtra pack-
age to produce a more nicely formatted table. The kable() function generates
a table from a data frame. The kable() function allows you to specify some dis-
play options for your table. For example, you can add a caption to your table
using the caption argument, and you can change the names of the columns in
the table using the col.names argument. The kable_styling() has additional
options available. Similar to the fig-pos = H command described for figures in
the previous section, adding “HOLD_position” to the kable_styling() func-
tion prevents the table from floating on the report; adding "scale_down" scales
the table so that it fits in the margins of the paper. The updated code and
output are shown in the following code chunk and Table 22.2. See the doc-
umentation for the kable() and kable_styling() functions for more options
available.

NHANESsample %>%
select(AGE, SEX, EDUCATION, INCOME, LEAD) %>%
head() %>%
kable(col.names = c("Age", "Sex", "Education Level",

"Poverty Income Ratio", "Lead Level")) %>%
kable_styling(latex_options = c("scale_down", "HOLD_position"))

Table 22.2: Head of the NHANES Sample Dataset
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Age Sex Education Level Poverty Income Ratio Lead Level
77 Male MoreThanHS 5.00 5.0
49 Male MoreThanHS 5.00 1.6
37 Male MoreThanHS 4.93 2.4
70 Male LessThanHS 1.07 1.6
81 Male LessThanHS 2.67 5.5
38 Female MoreThanHS 4.52 1.5

In the previous code chunk, we saw that kable() produces a much nicer table
in the knitted pdf that is more suitable for a data analysis report. In Chapter 4,
we also introduced the gt package. This package is an alternative package to
kableExtra that allows you to format each part of the table and includes
options for formatting the columns, adding footers or subtitles, or grouping
your table. See the package introduction5 for more details about this package.
An example gt table is given in the following code and output. Note that for
tables, we want to start our label with tbl- and can include a caption using
the tbl-cap option. The resulting table from the code chunk below is shown
in Figure 22.7.

```{r}
#| label: tbl-gt-ex
#| tbl-cap: "Head of the NHANES Sample Data"

NHANESsample %>%
select(AGE, SEX, EDUCATION, INCOME, LEAD) %>%
head() %>%
gt() %>%
tab_header(title = "Head of the NHANES Sample Data") %>%
cols_label(AGE ~ "Age",

SEX ~ "Sex",
EDUCATION ~ "Education Level",
INCOME ~ "Poverty Income Ratio",
LEAD ~ "Lead Level")

```

22.3.1 Using References
Quarto automatically adds figure and table numbers to the figures and tables
in your report. By using the label options, we can also reference our figures
easily by using their names: @fig-figname or @tab-tablename. The knitted pdf
substitutes the appropriate figure or table number into your text. Addition-

5https://gt.rstudio.com/articles/intro-creating-gt-tables.html

https://gt.rstudio.com/articles/intro-creating-gt-tables.html
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Figure 22.7

ally, we can reference sections by adding in labels to the section header. For
example, we added the tag #sec-awesome for the section in the following text
and can now reference it using @sec-awesome.

## Awesome Stuff {#sec-awesome}

22.4 Adding in Equations
Another useful option in Markdown is to add in mathematical equations. If you
want to insert math equations, you can do so by writing LaTeX expressions.
To write a math equation inline, you put a single dollar sign $ on either side
of your equation, and to write a math equation on its own line, you put a
double dollar sign $$ on either side of the equation, like so:

Here’s an equation that is inline with the text: $5x^2 + 9x^3$ produces 5𝑥2 +
9𝑥3. On the other hand, here’s an equation that is on its own line: $$5x^2 +
9x^3$$ produces 5𝑥2 + 9𝑥3

Here is some other LaTeX notation that you should know in order to write com-
mon equations: * To create a fraction, type \frac{numerator}{denominator}.
For example, \frac{2}{3} produces 2

3 . * To create a subscript, type _. For
example, x_{2} produces 𝑥2. * To create a superscript, type ^. For example,
x^{2} produces 𝑥2.
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If you want to learn more about how to write in LaTeX, Art of Problem
Solving6 provides a great reference for LaTeX symbols, and Overleaf7 provides
a helpful introduction to LaTeX in general.

22.5 Exercises
The exercise for this chapter is to recreate this example pdf8 created from an
Quarto file. You will need to use the NHANESsample data from the HDSinR-
data package.

6https://artofproblemsolving.com/wiki/index.php/LaTeX:Symbols
7https://www.overleaf.com/learn/latex/Tutorials#Learn_LaTeX_in_30_minutes
8https://github.com/alicepaul/health-data-science-using-r/blob/main/book/refs/exam

ple_quarto.pdf

https://artofproblemsolving.com/wiki/index.php/LaTeX:Symbols
https://www.overleaf.com/learn/latex/Tutorials#Learn_LaTeX_in_30_minutes
https://github.com/alicepaul/health-data-science-using-r/blob/main/book/refs/example_quarto.pdf
https://github.com/alicepaul/health-data-science-using-r/blob/main/book/refs/example_quarto.pdf
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