
Alice Paul

Mastering Health Data
Science Using R

To blah, blah, and blah.

Table of contents

Preface vii

Preface vii
Acknowledgments . vii

1 Getting Started with R 3
1.1 Why R? . 3

1.1.1 Installation of R and RStudio 4
1.2 The R Console . 4

1.2.1 Basic Computations and Objects 4
1.2.2 Naming Conventions . 6

1.3 RStudio and R Markdown . 6
1.3.1 Calling Functions . 7
1.3.2 Working Directories and Paths 8
1.3.3 Installing and Loading Packages 9
1.3.4 RStudio Global Options 10

1.4 Tips and Reminders . 10

2 Data Structures in R 13
2.1 Data Types . 13
2.2 Vectors . 15

2.2.1 Indexing a Vector . 17
2.2.2 Editing a Vector and Calculations 18
2.2.3 Practice Question . 19
2.2.4 Common Vector Functions 19

2.3 Factors . 21
2.4 Matrices . 22

2.4.1 Indexing a Matrix . 23
2.4.2 Editing a Matrix . 24
2.4.3 Practice Question . 25

2.5 Data Frames . 26
2.5.1 Indexing a Data Frame 28
2.5.2 Editing a Data Frame 28
2.5.3 Practice Question . 29

2.6 Lists . 29
2.7 Exercises . 31

iii

iv Contents

3 Working with Data Files in R 33
3.1 Importing and Exporting Data 33
3.2 Summarizing and Creating Data Columns 35

3.2.1 Column Summaries . 38
3.2.2 Practice Question . 40
3.2.3 Other Summary Functions 42
3.2.4 Practice Question . 46
3.2.5 Missing, Infinite, and NaN Values 46

3.3 Using Logic to Subset, Summarize, and Transform 51
3.3.1 Practice Question . 53
3.3.2 Other Selection Functions 55

3.4 Exercises . 56

I Introduction to R 1

4 Intro to Exploratory Data Analysis 61
4.1 Univariate Distributions . 61

4.1.1 Practice Question . 66
4.2 Bivariate Distributions . 66

4.2.1 Practice Question . 71
4.3 Autogenerated Plots . 71
4.4 Tables . 74
4.5 Exercises . 77

5 Data Transformations and Summaries 79
5.1 Tibbles and Data Frames . 79
5.2 Subsetting Data . 81

5.2.1 Practice Question . 84
5.3 Updating Rows and Columns 84

5.3.1 Practice Question . 86
5.4 Summarizing and Grouping . 86

5.4.1 Practice Question . 90
5.5 Exercises . 91

6 Merging and Reshaping Data 93
6.1 Tidy Data . 96
6.2 Reshaping Data . 97

6.2.1 Practice Question . 100
6.3 Merging Data with Joins . 101

6.3.1 Practice Question . 104
6.4 Exercises . 105

7 Visualization with ggplot2 109
7.1 Intro to ggplot . 110

7.1.1 Practice Question . 113
7.2 Adjusting the Axes and Aesthetics 113

Contents v

7.3 Adding Groups . 121
7.3.1 Practice Question . 123

7.4 Extra Options . 125
7.5 Exercises . 130

II Exploratory Analysis 59

8 Probability Distributions in R 135
8.1 Probability Distributions in R 136

8.1.1 Random Samples . 136
8.1.2 Density Function . 139
8.1.3 Cumulative Distribution 140
8.1.4 Quantile Distribution 141
8.1.5 Reference List for Probability Distributions 142
8.1.6 Practice Question . 143

8.2 Empirical Distributions and Sampling Data 143
8.2.1 Practice Question . 144

8.3 Exercises . 145

9 Hypothesis Testing 147
9.1 Univariate Distributions and One Sample Tests 147

9.1.1 Practice Question . 150
9.2 Correlation and Covariance . 151
9.3 Two Sample Tests for Continuous Variables 153

9.3.1 Practice Question . 156
9.3.2 Two Sample Variance Tests 156

9.4 Two Sample Tests for Categorical Variables 158
9.4.1 Practice Question . 160

9.5 Adding Hypothesis Tests to Summary Tables 160
9.6 Exercises . 161

III Distributions and Hypothesis Testing 133

10 Linear Regression 165
10.1 Simple Linear Regression . 165

10.1.1 Practice Question . 168
10.2 Multiple Linear Regression . 169
10.3 Diagnostic Plots and Measures 172

10.3.1 Normality . 174
10.3.2 Homoscedasticity, Linearity, and Collinearity 175
10.3.3 Practice Question . 176
10.3.4 Leverage and Influence 176

10.4 Interactions and Transformations 178
10.4.1 Practice Question . 181

10.5 Evaluation Metrics . 184
10.6 Stepwise Selection . 185

vi Contents

10.7 Exercises . 188

11 Logistic Regression 189
11.1 Generalized Linear Models in R 190

11.1.1 Practice Question . 193
11.2 Residuals, Discrimination, and Calibration 193

11.2.1 Receiver Operating Characteristic (ROC) Curve 195
11.2.2 Calibration Plot . 197
11.2.3 Practice Question . 198

11.3 Variable Selection and Likelihood Ratio Tests 199
11.4 Extending Beyond Binary Outcomes 202
11.5 Exercises . 203

IV Regression 163

12 Writing Reports in R Markdown 207
12.1 Starting an R Markdown file 207

12.1.1 Adding Code Chunks . 209
12.1.2 Customizing Chunks . 209

12.2 Formatting Text in Markdown 211
12.3 Formatting Figures and Tables 212
12.4 Using Bookdown for References 216
12.5 Adding in Equations . 217
12.6 Exercises . 217

13 Expanding your R Skills 219
13.1 Reading Documentation for New Packages 219
13.2 Trying Simple Examples . 220
13.3 Deciphering Error Messages and Warnings 221

13.3.1 Debugging Code . 222
13.4 General Programming Tips . 224
13.5 Exercises . 225

References 227

References 227

Preface

This book serves as an interactive introduction to R for public health and
health data science students. Topics include data structures in R, exploratory
analysis, distributions, hypothesis testing, and regression analysis. The pre-
sentation assumes knowledge with the underlying methodology and focuses
instead on how to use R to implement your analysis.

This book is written using Quarto Book. You can download the Quarto files
used to generate this book or a corresponding Jupyter notebook from the
github repository1. The github repository also contains a few cheat sheets2

including a pdf containing all functions3 shown in this book.

This work is licensed under the Creative Commons Attribution 4.0 Interna-
tional CC BY 4.04.

Acknowledgments
This book was written with the support of a Data Science Institute Seed
Grant5. Thanks to students Jialin Liu, Joanna Walsh, and Xinbei Yu for
their help and feedback. Please contact Dr. Paul (alice_paul@brown.edu) with
questions, suggested edits, or feedback.

1https://github.com/alicepaul/health-data-science-using-r
2https://github.com/alicepaul/health-data-science-using-r/tree/main/book/refs
3https://github.com/alicepaul/health-data-science-using-r/blob/main/book/refs/functi

ons_cheat_sheet.pdf
4https://creativecommons.org/licenses/by/4.0/
5https://dsi.brown.edu/

vii

https://github.com/alicepaul/health-data-science-using-r
https://github.com/alicepaul/health-data-science-using-r/tree/main/book/refs
https://github.com/alicepaul/health-data-science-using-r/blob/main/book/refs/functions_cheat_sheet.pdf
https://github.com/alicepaul/health-data-science-using-r/blob/main/book/refs/functions_cheat_sheet.pdf
https://creativecommons.org/licenses/by/4.0/
https://dsi.brown.edu/

Part I

Introduction to R

1
Getting Started with R

This chapter will introduce you to R as a programming language and show
you how we can use this language in two different ways: directly through the
R console and using the RStudio development environment. To start, you will
need to download R1 and RStudio2.

1.1 Why R?
What are some of the benefits of using R?

• R is built for statisticians and data analysts.

• R is open source.

• R has most of the latest statistical methods available.

• R is flexible.

Since R is built for statisticians, it is built with data in mind. This comes
in handy when we want to streamline how we process and analyze data. It
also means that many statisticians working on new methods are publishing
user-created packages in R, so R users have access to most methods of inter-
est. R is also an interpreted language, which means that we do not have to
compile our code into machine language first: this allows for simpler syntax
and more flexibility when writing our code, which also makes it a great first
programming language to learn.

Python is another interpreted language often used for data analysis. Both
languages feature simple and flexible syntax, but while python is more broadly
developed for usage outside of data science and statistical analyses, R is a great
programming language for those in health data science. I use both languages
and find switching between them to be straightforward, but I do prefer R for
anything related to data or statistical analysis.

1https://cran.rstudio.com/
2https://posit.co/download/rstudio-desktop/

3

https://cran.rstudio.com/
https://posit.co/download/rstudio-desktop/

4 1 Getting Started with R

1.1.1 Installation of R and RStudio
To run R on your computer, you will need to download and install R3. This
will allow you to open the R application and run R code interactively. However,
to get the most out of programming with R, you will want to install RStudio,
which is an integrated development environment (IDE) for R and python.
RStudio offers a nice environment for writing, editing, running, and debugging
R code. We will talk through more of the benefits of using RStudio.

Each chapter in this book is written as a Quarto document and can also be
downloaded as a Jupyter notebook. You can open Quarto files in RStudio to
run the code as you read and complete the practice questions and exercises.

1.2 The R Console
The R console provides our first intro to code in R. Figure 1.1 shows what
the console will look like when you open it. You should see a blinking cursor
- this where we can write our first line of code!

Figure 1.1: The R Console.

To start, type 2+3 and press ENTER. You should see that 5 is printed below
that code and that your cursor is moved to the next line.

1.2.1 Basic Computations and Objects
In the example above, we coded a simple addition. Try out some other basic
calculations using the following operators:

3https://cran.rstudio.com/

https://cran.rstudio.com/

1.2 The R Console 5

• Addition: 5+6

• Subtraction: 7-2

• Multiplication: 2*3

• Division: 6/3

• Exponentiation: 4^2

• Modulo: 100 %% 4

For example, use the modulo operator to find what 100 mod 4 is. It should
return 0 since 100 is divisible by 4.

If we want to save the result of any computation, we need to create an object
to store our value of interest. An object is simply a named data structure
that allows us to reference that data structure. Objects are also commonly
called variables. In the code below, we create an object x which stores the
value 5 using the assignment operator <-. The assignment operator assigns
whatever is on the right hand side of the operator to the name on the left
hand side. We can now reference x by calling its name. Additionally, we can
update its value by adding 1. In the second line of code, the computer first
finds the value of the right hand side by finding the current value of x before
adding 1 and assigning it back to x.

x <- 2+3
x <- x+1
x
#> [1] 6

We can create and store multiple objects by using different names. The code
below creates a new object y that is one more than the value of x. We can see
that the value of x is still 5 after running this code.

x <- 2+3
y <- x
y <- y + 1
x
#> [1] 5

6 1 Getting Started with R

1.2.2 Naming Conventions
As we start creating objects, we want to make sure we use good object names.
Here are a few tips for naming objects effectively:

• Stick to a single format. We will use snake_case, which uses underscores
between words (e.g. my_var, class_year).

• Make your names useful. Try to avoid using names that are too long
(e.g. which_day_of_the_week) or do not contain enough information (e.g.,
x1, x2, x3).

• Replace unexplained values with an object. For example, if you need to
do some calculations using 100 as the number of participants, create an
object n_part with value 100 rather than repeatedly using the number.
This makes the code easy to update and helps the user avoid possible
errors.

1.3 RStudio and R Markdown
If we made a mistake in the code above, we would have to retype everything
from the beginning. However, when we write code, we often want to be able
to run it multiple times and develop it in stages. R scripts and R markdown
files allow us to save all of our R code in files that we can update and re-run,
which allows us to create reproducible and shareable analyses. We will now
move to RStudio as our development environment to demonstrate creating an
R script. When you open RStudio, you will see multiple windows. Start by
opening a new R file by going to File -> New File -> R Script. You should
now see several windows as shown in Figure 1.2.

In the code editor window in the top left, add the following code to your .R
file and save the file. Note that here we used snake_case to name our objects!

Calculate student to faculty ratio, 2023 enrollment
num_students <- 132
num_faculty <- 23
student_fac_ratio <- num_students/num_faculty

The first line starts with # and does not contain any code. This is a comment
line, which allows us to add context, intent, or extra information to help the
reader understand our code. A good rule of thumb is that we want to write
enough comments so that we could open our code in six months and be able

1.3 RStudio and R Markdown 7

Figure 1.2: RStudio Layout and Panes.

to understand what we were doing. As we develop longer chunks of code, this
will become more important.

1.3.1 Calling Functions
When we use R, we have access to all the functions available in base R. A
function takes in one or more inputs and returns a single output object. Let’s
first use the simple function exp(). This exponential function takes in one (or
more) numeric values and exponentiates them. The code below computes 𝑒3.

exp(3)
#> [1] 20.1

Some other simple functions are shown below that all convert a numeric input
to an integer value. The ceiling() and floor() functions returns the ceiling
and floor of your input, and the round() function will round your input to the
closest integer. Note that the round() function will round a 5 to the closest
even integer.

ceiling(3.7)
#> [1] 4

floor(3.7)
#> [1] 3

8 1 Getting Started with R

round(2.5)
#> [1] 2
round(3.5)
#> [1] 4

If we want to learn about a function, we can use the help operator ? by
typing it in front of the function you are interested in: this will bring up the
documentation for that particular function. This documentation will often tell
you the usage of the function, the arguments (the object inputs), the value
(information about the returned object), and will give some examples of how to
use the function. For example, if we want to understand the difference between
floor() and ceiling(), we can call ?floor and ?ceiling. This should bring
up the documentation in your help window. We can then read that the floor
function rounds a numeric input down to the nearest integer whereas the
ceiling function rounds a numeric input up to the nearest integer.

1.3.2 Working Directories and Paths
Let’s try using another example function: read.csv(). This function reads in a
comma-delimited file and returns the information as a data frame (try typing
?read.csv in the console to read more about this function). We will learn more
about data frames in Chapter 2. The first argument to this function is a file,
which can be expressed as either a filename or a path to a file. First, download
the file fake_names.csv from this book’s github repository4. By default, R
will look for the file in your current working directory. To find the working
directory, you can run getwd(). You can see below that my current working
directory is where the book content is on my computer.

getwd()
#> [1] "/Users/hannaheglinton/Documents/GitHub/health-data-science-

using-r/book"↪

You can either move the .csv file to your current working directory and load
it in, or you can specify the path to the .csv file. Another option is to update
your working directory by using the setwd() function.

setwd('/Users/Alice/Dropbox/health-data-science-using-r/book/data')

4https://github.com/alicepaul/health-data-science-using-r/tree/main/book/data

https://github.com/alicepaul/health-data-science-using-r/tree/main/book/data

1.3 RStudio and R Markdown 9

If you receive an error that a file cannot be found, you most likely have the
wrong path to the file or the wrong file name. Below, I chose to specify the
path to the downloaded .csv file, saved this file to an object called df, and
then printed that df object.

update this with the path to your file
df <- read.csv("data/fake_names.csv")
df
#> Name Age DOB City State
#> 1 Ken Irwin 37 6/28/85 Providence RI
#> 2 Delores Whittington 56 4/28/67 Smithfield RI
#> 3 Daniel Hughes 41 5/22/82 Providence RI
#> 4 Carlos Fain 83 2/2/40 Warren RI
#> 5 James Alford 67 2/23/56 East Providence RI
#> 6 Ruth Alvarez 34 9/22/88 Providence RI

We can see that df contains the information from the .csv file and that R has
printed the first few observations of the data.

1.3.3 Installing and Loading Packages
When working with data frames, we will often use the tidyverse package
(Wickham 2023), which is actually a collection of R packages for data science
applications. An R package is a collection of functions and/or sample data
that allow us to expand on the functionality of R beyond the base functions.
You can check whether you have the tidyverse package installed by going to
the package pane in RStudio or by running the command below, which will
display all your installed packages.

installed.packages()

If you don’t already have a package installed, you can install it using the
install.packages() function. Note that you have to include single or double
quotes around the package name when using this function. You only have to
install a package one time.

install.packages('tidyverse')

The function read_csv() is another function to read in comma-delimited files
that is part of the readr package in the tidyverse (Wickham, Hester, and
Bryan 2023). However, if we tried to use this function to load in our data,
we would get an error that the function cannot be found. That is because
we haven’t loaded in this package. To do so, we use the library() function.
Unlike the install.packages() function, we do not have to use quotes around
the package name when calling this library() function. When we load in
a package, we will see some messages. For example, below we see that this

10 1 Getting Started with R

package contains the functions filter() and lag() that are also functions
in base R. In future chapters, we will suppress these messages to make the
chapter presentation nicer. After loading the tidyverse package, we can now
use the read_csv() function as shown below.

library(tidyverse)

df <- read_csv("data/fake_names.csv", show_col_types=FALSE)
df
#> # A tibble: 6 x 5
#> Name Age DOB City State
#> <chr> <dbl> <chr> <chr> <chr>
#> 1 Ken Irwin 37 6/28/85 Providence RI
#> 2 Delores Whittington 56 4/28/67 Smithfield RI
#> 3 Daniel Hughes 41 5/22/82 Providence RI
#> 4 Carlos Fain 83 2/2/40 Warren RI
#> 5 James Alford 67 2/23/56 East Providence RI
#> # i 1 more row

Alternatively, we could have told R where to locate the function by adding
readr:: before the function. This tells it to find read_csv() function in the
readr package. This can be helpful even if we have already loaded in the
package, since sometimes multiple packages have functions with the same
name.

df <- readr::read_csv("data/fake_names.csv", show_col_types = FALSE)

1.3.4 RStudio Global Options
You have now had a basic tour of RStudio. We highly recommend that you
update your RStudio options to not save your workspace on exiting or load it
on starting. This will ensure that you create fully reproducible code and avoid
possible errors or confusion.

1.4 Tips and Reminders
We end this chapter with some final tips and reminders.

• Keyboard Shortcuts: RStudio has several useful keyboard shortcuts

1.4 Tips and Reminders 11

Figure 1.3: RStudio Global Options.

that will make your programming experience more streamlined. It is worth
getting familiar with some of the most common keyboard shortcuts using
this book’s cheatsheet5.

• Asking for help: Within R, you can use the ? operator or the help() func-
tion to pull up documentation on a given function. This documentation is
also available online6.

• Finding all objects: You can use the Environment panel or ls() function
to find all current objects. If you have an error that an object you are
calling does not exist, take a look to find where you defined it.

• Checking packages: If you get an error that a function does not exist,
check to make sure you have loaded that package using the library()
function. The list of packages used in this book is given on the github
repository homepage.

5https://github.com/alicepaul/health-data-science-using-r/blob/main/book/refs/r_st
udio_keyboard_shortcuts.pdf

6https://rdocumentation.org/

https://github.com/alicepaul/health-data-science-using-r/blob/main/book/refs/r_studio_keyboard_shortcuts.pdf
https://github.com/alicepaul/health-data-science-using-r/blob/main/book/refs/r_studio_keyboard_shortcuts.pdf
https://rdocumentation.org/

2
Data Structures in R

In this chapter, we will demonstrate the key data structures in R. Data
structures are how information is stored in R, and the data structures that we
use inform R how to interpret our code. Any object is a named instance of
a data structure. For example, the object ex_num below is a vector of numeric
type.

ex_num <- 4

The main data structures in R are vectors, factors, matrices, arrays, lists,
and data frames. These structures are distinguished by their dimensions and
by the type of data they store. For example, we might have a 1-dimensional
vector that contains all numeric values, or we could have a 2-dimensional data
frame with rows and columns where we might have one numeric column and
one character column. In Figure 2.1, there are two vectors with different types
(character and numeric) on top and then a matrix and data frame below. In
this chapter, we will cover each data structure except for arrays. Arrays are
an extension of matrices that allow for data that is more than 2-dimensional
and are not needed for the applications covered in this book.

2.1 Data Types
Each individual value in R has a type: logical, integer, double, or character.
We can think of these as the building blocks of all data structures. Below, we
can use the typeof() function to find the type of our vector from above, which
shows that the value of ex_num is a double. A double is a numeric value with
a stored decimal.

typeof(ex_num)
#> [1] "double"

On the other hand, an integer is a whole number that does not contain a

13

14 2 Data Structures in R

Figure 2.1: Data structures.

decimal. We now create an integer object ex_int. To indicate to R that we
want to restrict our values to integer values, we use an L after the number.

ex_int <- 4L
typeof(ex_int)
#> [1] "integer"

Both ex_num and ex_int are numeric objects, but we can also work with
two other types of objects: characters (e.g. “php”, “stats”) and booleans
(e.g. TRUE, FALSE), also known as logicals.

ex_bool <- TRUE
ex_char <- "Alice"

typeof(ex_bool)
#> [1] "logical"
typeof(ex_char)
#> [1] "character"

One important characteristic of logical objects is that R will also interpret
them as 0/1. This means they can be added as in the example below: each
TRUE has a value of 1 and each FALSE has a value of 0.

2.2 Vectors 15

TRUE+FALSE+TRUE
#> [1] 2

To create all of the above objects, we used the assignment operator <-, which
we discussed in Chapter 1. You may see code elsewhere that uses an = instead.
While = can also be used for assignment, it is more standard practice to use
<-.

2.2 Vectors
In the examples above, we created objects with a single value. R actually uses
a vector of length 1 to store this information. Vectors are 1-dimensional data
structures that can store multiple data values of the same type (e.g. character,
boolean, or numeric).

Figure 2.2: Vector Examples.

We can confirm this by using the is.vector() function, which returns whether
or not the inputted argument is a vector.

is.vector(ex_bool)
#> [1] TRUE

One way to create a vector with multiple values is to use the combine function
c(). Below we create two vectors: one with the days of the week and one with
the amount of rain on each day. The first vector has all character values, and
the second one has all numeric values.

days <- c("Monday", "Tuesday", "Wednesday", "Thursday", "Friday")
rain <- c(5, 0.1, 0, 0, 0.4)

Remember, vectors cannot store objects of different types. Because of this, in

16 2 Data Structures in R

the code below, R automatically converts the numeric value to be a character
in order to store these values in a vector together.

c("Monday", 5)
#> [1] "Monday" "5"

The class() function returns the data structure of an object. If we check the
classes of these two objects using the class() function, we will see that R tells
us that the first is a character vector and the second is a numeric vector. This
matches the data type in this case.

class(days)
#> [1] "character"
class(rain)
#> [1] "numeric"

What happens when we create an empty vector? What is the class?

ex_empty <- c()
class(ex_empty)
#> [1] "NULL"

In this case, there is no specified type yet. If we wanted to specify the type,
we could make an empty vector using the vector() function.

ex_empty <- vector(mode = "numeric")
class(ex_empty)
#> [1] "numeric"

Another way to create a vector is with the rep() or seq() functions. The first
function rep(x, times) takes in a vector x and a number of times times and
outputs x repeated that many times. Let’s try this with a single value below.
The second function seq(from, to, step) takes in a numeric starting value
from, end value to, and step size step and returns a sequence from from in
increments of step until a maximum value of to is reached.

rep(0, 5)
#> [1] 0 0 0 0 0
rep("Monday", 4)
#> [1] "Monday" "Monday" "Monday" "Monday"
seq(1, 5, 1)

2.2 Vectors 17

#> [1] 1 2 3 4 5
seq(0, -10, -2)
#> [1] 0 -2 -4 -6 -8 -10

2.2.1 Indexing a Vector
Once we have a vector, we may want to access certain values stored in that
vector. To do so, we index the vector using the position of each value: the first
value in the vector has index 1, the second value has index 2, etc. When we
say a vector is 1-dimensional, we mean that we can define the position of each
value by a single index. To index the vector, we then use square brackets []
after the vector name and provide the position. Below, we use these indices
to find the value at index 1 and the value at index 4.

days[1]
#> [1] "Monday"
days[4]
#> [1] "Thursday"

We can either access a single value or a subset of values using a vector of
indices. Let’s see what happens when we use a vector of indices c(1,4) and
then try using -c(1,4) and see what happens then. In the first case, we get
the values at index 1 and at index 4. In the second case, we get all values
except at those indices. The - indicates that we want to remove rather than
select these indices.

days[c(1,4)]
#> [1] "Monday" "Thursday"
days[-c(1,4)]
#> [1] "Tuesday" "Wednesday" "Friday"

However, always indexing by the index value can sometimes be difficult or
inefficient. One extra feature of vectors is that we can associate a name with
each value. Below, we update the names of the vector rain to be the days of
the week and then find Friday’s rain count by indexing with the name.

names(rain) <- days
print(rain)
#> Monday Tuesday Wednesday Thursday Friday
#> 5.0 0.1 0.0 0.0 0.4
rain["Friday"]

18 2 Data Structures in R

#> Friday
#> 0.4

The last way to index a vector is to use TRUE and FALSE values. If we have a
vector of booleans that is the same length as our original vector, then this will
return all the values that correspond to a TRUE value. For example, indexing
the days vector by the logical vector ind_bools below will return its first and
fourth values. We will see more about using logic to access certain values later
on.

ind_bools <- c(TRUE, FALSE, FALSE, TRUE, FALSE)
days[ind_bools]
#> [1] "Monday" "Thursday"

2.2.2 Editing a Vector and Calculations
The mathematical operators we saw in the last chapter (+, -, *, /, ^, %%) can
all be applied to numeric vectors and will be applied element-wise. That is, in
the code below, the two vectors are added together by index. This holds true
for some of the built-in math functions as well:

• exp() - exponential
• log() - log
• sqrt() - square root
• abs() - absolute value
• round() - round to nearest integer value
• ceiling() - round up to the nearest integer value
• floor() - round down to the nearest integer value

c(1,2,3) + c(1,1,1)
#> [1] 2 3 4
c(1,2,3) + 1 # equivalent to the code above
#> [1] 2 3 4
sqrt(c(1,4,16))
#> [1] 1 2 4

After we create a vector, we may need to update its values. For example, we
may want to change a specific value. We can do so using indexing. Below, we
update the rain value for Friday using the assignment operator.

2.2 Vectors 19

rain["Friday"] <- 0.5
rain
#> Monday Tuesday Wednesday Thursday Friday
#> 5.0 0.1 0.0 0.0 0.5

Further, we may need to add extra entries. We can do so using the c() function
again but this time passing in the vector we want to add to as our first
argument. This will create a single vector with all previous and new values.
Below, we add two days to both vectors and then check the length of the
updated vector rain. The length() function returns the length of a vector.

length(rain)
#> [1] 5
days <- c(days,"Saturday","Sunday") # add the weekend with no rain
rain <- c(rain,0,0)
length(rain)
#> [1] 7

We can also call some useful functions on vectors. For example, the sum(),
max(), and min() functions will return the sum, maximum value, and minimum
value of a vector, respectively.

2.2.3 Practice Question
Create a vector of the odd numbers from 1 to 11 using the seq() function.
Then, find the third value in the vector using indexing, which should have
value 5.

Insert your solution here:

2.2.4 Common Vector Functions
Below we list some of the most common vector functions that are available in
base R. All of these functions assume that the vector is numeric. If we pass
the function a logical vector, R will convert the vector to 0/1 first, and if we
pass the function a character vector, R will give us an error message.

• sum() - summation
• median() - median value
• mean() - mean
• sd() - standard deviation
• var() - variance

20 2 Data Structures in R

• max() - maximum value
• which.max() - index of the first element with the maximum value
• min() - minimum value
• which.min() - index of the first element with the minimum value

Try these out using the vector rain. Note that R is case sensitive - Mean() is
considered different from mean(), so if we type Mean(rain) R will tell us that
it cannot find this function.

mean(rain)
#> [1] 0.8
min(rain)
#> [1] 0
which.min(rain)
#> Wednesday
#> 3

We may also be interested in the order of the values. The sort() function sorts
the values of a vector, whereas the order() function returns the permutation
of the elements to be in sorted order. The last line of code below sorts the
days of the week from smallest to largest rain value.

rain
#> Monday Tuesday Wednesday Thursday Friday
#> 5.0 0.1 0.0 0.0 0.5 0.0 0.0
order(rain)
#> [1] 3 4 6 7 2 5 1
days[order(rain)]
#> [1] "Wednesday" "Thursday" "Saturday" "Sunday" "Tuesday"
#> [6] "Friday" "Monday"

Both of these functions have an extra possible argument decreasing, which
has a default value of FALSE. We can specify this to be TRUE to find the
days of the week sorted from largest to smallest rainfall.

days[order(rain, decreasing=TRUE)]
#> [1] "Monday" "Friday" "Tuesday" "Wednesday" "Thursday"
#> [6] "Saturday" "Sunday"

2.3 Factors 21

2.3 Factors
A factor is a special kind of vector that behaves exactly like a regular vector
except that it represents values from a category. In particular, a factor keeps
track of all possible values of that category, which are called the levels of
the factor. Factors will be especially helpful when we start getting into data
analysis and have categorical columns. The as.factor() function will convert
a vector to a factor.

days <- c("Monday", "Tuesday", "Wednesday", "Monday",
"Thursday", "Wednesday")

days_fct <- as.factor(days)

class(days_fct)
#> [1] "factor"
levels(days_fct)
#> [1] "Monday" "Thursday" "Tuesday" "Wednesday"

Above, we did not specify the possible levels for our column. Instead, R found
all values in the vector days and set these equal to the levels of the factor.
Because of this, if we try to change one of the levels to ‘Friday’, we will get
an error. Uncomment the line below to see the error message.

#days_fct[2] <- "Friday"

We can avoid this error by specifying the levels using the factor() function
instead of the as.factor() function.

days <- c("Monday", "Tuesday", "Wednesday", "Monday", "Thursday",
"Wednesday")

days_fct <- factor(days,
levels = c("Monday", "Tuesday", "Wednesday",

"Thursday", "Friday", "Saturday", "Sunday"))

class(days_fct)
#> [1] "factor"
levels(days_fct)
#> [1] "Monday" "Tuesday" "Wednesday" "Thursday" "Friday"
#> [6] "Saturday" "Sunday"
days_fct[2] <- "Friday"

22 2 Data Structures in R

Factors can also be used for numeric vectors. For example, we might have a
vector that is 0/1 that represents whether or not a day is a weekend. This can
also only take on certain values (0 or 1).

weekend <- as.factor(c(1, 0, 0, 0, 1, 1))
levels(weekend)
#> [1] "0" "1"

2.4 Matrices
Matrices are similar to vectors in that they store data of the same type, but
matrices are two-dimensional (as opposed to one-dimensional vectors), and
consist of both rows and columns.

Figure 2.3: Matrix Example.

Below, we create a matrix reporting the daily rainfall over multiple weeks. We
can create a matrix using the matrix(data, nrow, ncol, byrow) function. This
creates a nrow by ncol matrix from the vector data values filling in by row if
byrow is TRUE and by column otherwise. Run the code below. Then, change
the last argument to byrow=FALSE and see what happens to the values.

rainfall <- matrix(c(5,6,0.1,3,0,1,0,1,0.4,0.2,0.5,0.3,0,0),
ncol=7, nrow=2, byrow=TRUE)

rainfall
#> [,1] [,2] [,3] [,4] [,5] [,6] [,7]
#> [1,] 5 6.0 0.1 3.0 0.0 1 0
#> [2,] 1 0.4 0.2 0.5 0.3 0 0

2.4 Matrices 23

We can find the dimensions of a matrix using the nrow(), ncol(), or dim()
functions, which return the number of rows, the number of columns, and both
the number of rows and columns, respectively.

nrow(rainfall)
#> [1] 2
ncol(rainfall)
#> [1] 7
dim(rainfall)
#> [1] 2 7

2.4.1 Indexing a Matrix
Since matrices are two-dimensional, a single value is indexed by both its row
number and its column number. This means that to access a subset of values
in a matrix, we need to provide row and column indices. Below, we access a
single value in the 1st row and the 4th column. The first value is always the
row index and the second value is always the column index.

rainfall[1,4]
#> [1] 3

As before, we can also provide multiple indices to get multiple values. Below,
we choose multiple columns but we can also choose multiple rows (or multiple
rows and multiple columns!).

rainfall[1,c(4,5,7)]
#> [1] 3 0 0

As with vectors, we can also use booleans to index a matrix by providing
boolean values for the rows and/or columns. Note that below we give a vector
for the row indices and no values for the columns. Since we did not specify
any column indices, this will select all of them.

rainfall[c(FALSE, TRUE),]
#> [1] 1.0 0.4 0.2 0.5 0.3 0.0 0.0

Let’s do the opposite and select some columns and all rows.

24 2 Data Structures in R

rainfall[,c(TRUE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE)]
#> [,1] [,2]
#> [1,] 5 6.0
#> [2,] 1 0.4

As with vectors, we can specify row names and column names to access entries
instead of using indices. The colnames() and rownames() functions allow us to
specify the column and row names, respectively.

colnames(rainfall) <- c("Monday", "Tuesday", "Wednesday", "Thursday",
"Friday", "Saturday", "Sunday")

rownames(rainfall) <- c("Week1", "Week2")
rainfall["Week1",c("Friday","Saturday")]
#> Friday Saturday
#> 0 1

2.4.2 Editing a Matrix
If we want to change the values in a matrix, we need to first index those values
and then assign them the new value(s). Below, we change a single entry to
be 3 and then update several values to all be 0. Note that we do not provide
multiple 0’s on the right-hand side, as R will infer that all values should be
set to 0.

rainfall["Week1", "Friday"] <- 3

rainfall["Week1", c("Monday", "Tuesday")] <- 0
print(rainfall)
#> Monday Tuesday Wednesday Thursday Friday Saturday Sunday
#> Week1 0 0.0 0.1 3.0 3.0 1 0
#> Week2 1 0.4 0.2 0.5 0.3 0 0

Further, we can append values to our matrix by adding rows or columns
through the rbind() and cbind() functions. The first function appends a row
(or multiple rows) to a matrix and the second appends a column (or multiple
columns). Note that below I provide a row and column name when passing
in the additional data. If I hadn’t specified these names, then those rows and
columns would not be named.

2.4 Matrices 25

rainfall <- rbind(rainfall, "Week3" = c(0.4, 0.0, 0.0, 0.0, 1.2, 2.2,
0.0))

rainfall <- cbind(rainfall, "Total" = c(7.1, 2.4, 3.8))
print(rainfall)
#> Monday Tuesday Wednesday Thursday Friday Saturday Sunday Total
#> Week1 0.0 0.0 0.1 3.0 3.0 1.0 0 7.1
#> Week2 1.0 0.4 0.2 0.5 0.3 0.0 0 2.4
#> Week3 0.4 0.0 0.0 0.0 1.2 2.2 0 3.8

Here is an example where we bind two matrices by column. Note that whenever
we bind two matrices together, we have to be sure that their dimensions are
compatible and that they are of the same type.

A <- matrix(c(1,2,3,4), nrow=2)
B <- matrix(c(5,6,7,8), nrow=2)
C <- cbind(A, B)
C
#> [,1] [,2] [,3] [,4]
#> [1,] 1 3 5 7
#> [2,] 2 4 6 8

As with vectors, most mathematical operators (+, -, *, / etc.) are applied
element-wise in R.

A+B
#> [,1] [,2]
#> [1,] 6 10
#> [2,] 8 12

exp(C)
#> [,1] [,2] [,3] [,4]
#> [1,] 2.72 20.1 148 1097
#> [2,] 7.39 54.6 403 2981

2.4.3 Practice Question
Create a 3x4 matrix of all 1’s using the rep() and matrix() functions. Then
select the first and third columns using indexing which will return a 3x2 matrix
of all ones.

26 2 Data Structures in R

Insert your solution here:

2.5 Data Frames
Matrices can store data like the rainfall data, where everything is of the same
type. However, if we want to capture more complex data records, we also want
to allow for different measurement types: this is where data frames come in.
A data frame is like a matrix in that data frames are two-dimensional, but
unlike matrices, data frames allow for each column to be a different type. In
this case, each row corresponds to a single data entry (or observation) and
each column corresponds to a different variable.

Figure 2.4: Data Frame Example.

For example, suppose that, for every day in a study, we want to record the
temperature, rainfall, and day of the week. Temperature and rainfall can be
numeric values, but day of the week will be character type. We create a data
frame using the data.frame() function. Note that I am providing column
names for each vector (column).

The head() function prints the first six rows of a data frame (to avoid printing
very large datasets). In our case, all the data is shown because we only created
four rows. The column names are displayed as well as their type. By contrast,
the tail() function prints the last six rows of a data frame.

weather_data <- data.frame(day_of_week = c("Monday","Tuesday",
"Wednesday", "Monday"),

temp = c(70,62,75,50),

2.5 Data Frames 27

rain = c(5,0.1,0.0,0.5))
head(weather_data)
#> day_of_week temp rain
#> 1 Monday 70 5.0
#> 2 Tuesday 62 0.1
#> 3 Wednesday 75 0.0
#> 4 Monday 50 0.5

The dim(), nrow(), and ncol() functions return the dimensions, number of
rows, and number of columns of a data frame, respectively.

dim(weather_data)
#> [1] 4 3
nrow(weather_data)
#> [1] 4
ncol(weather_data)
#> [1] 3

The column names can be found (or assigned) using the colnames() or names()
function. These were specified when I created the data. On the other hand,
the row names are currently the indices.

colnames(weather_data)
#> [1] "day_of_week" "temp" "rain"
rownames(weather_data)
#> [1] "1" "2" "3" "4"
names(weather_data)
#> [1] "day_of_week" "temp" "rain"

We update the row names to be more informative as with a matrix using the
rownames() function.

rownames(weather_data) <- c("6/1", "6/2", "6/3", "6/8")
head(weather_data)
#> day_of_week temp rain
#> 6/1 Monday 70 5.0
#> 6/2 Tuesday 62 0.1
#> 6/3 Wednesday 75 0.0
#> 6/8 Monday 50 0.5

28 2 Data Structures in R

2.5.1 Indexing a Data Frame
We can select elements of the data frame using its indices in the same way as
we did with matrices. Below, we access a single value and then a subset of our
data frame. The subset returned is itself a data frame. Note that the second
line below returns a data frame.

weather_data[1,2]
#> [1] 70
weather_data[1,c("day_of_week","temp")]
#> day_of_week temp
#> 6/1 Monday 70

Another useful way to access the columns of a data frame is by using the $
accessor and the column name.

weather_data$day_of_week
#> [1] "Monday" "Tuesday" "Wednesday" "Monday"
weather_data$temp
#> [1] 70 62 75 50

The column day_of_week is a categorical column, but it can only take on a
limited number of values. For this kind of column, it is often useful to convert
that column to a factor as we did before.

weather_data$day_of_week <- factor(weather_data$day_of_week)
levels(weather_data$day_of_week)
#> [1] "Monday" "Tuesday" "Wednesday"

2.5.2 Editing a Data Frame
As with matrices, we can change values in a data frame by indexing those
entries.

weather_data[1, "rain"] <- 2.2
weather_data
#> day_of_week temp rain
#> 6/1 Monday 70 2.2
#> 6/2 Tuesday 62 0.1
#> 6/3 Wednesday 75 0.0
#> 6/8 Monday 50 0.5

2.6 Lists 29

The rbind() functions and cbind() functions also work for data frames in the
same way as for matrices. However, another way to add a column is to directly
use the $ accessor. Below, we add a categorical column called aq_warning,
indicating whether there was an air quality warning that day.

weather_data$aq_warning <- as.factor(c(1, 0, 0, 0))
weather_data
#> day_of_week temp rain aq_warning
#> 6/1 Monday 70 2.2 1
#> 6/2 Tuesday 62 0.1 0
#> 6/3 Wednesday 75 0.0 0
#> 6/8 Monday 50 0.5 0

2.5.3 Practice Question
Add a column to weather_data called air_quality_index using the rep() func-
tion so that all values are NA (the missing value in R). Then, index the second
value of this column and set the value to be 57. The result should look like
Figure 2.5.

Figure 2.5: Air Quality Data.

Insert your solution here:

2.6 Lists
A data frame is actually a special kind of another data structure called a list,
which is a collection of objects under the same name. These objects can be
vectors, matrices, data frames, or even other lists! There does not have to be

30 2 Data Structures in R

any relation in size, type, or other attribute between different members of the
list. Below, we create an example list using the list() function, which takes
in a series of objects. What are the types of each element of the list? We can
access each element using the index, but here we need to use double brackets.

ex_list <- list("John", c("ibuprofen", "metformin"), c(136, 142, 159))
print(ex_list)
#> [[1]]
#> [1] "John"
#>
#> [[2]]
#> [1] "ibuprofen" "metformin"
#>
#> [[3]]
#> [1] 136 142 159
ex_list[[2]]
#> [1] "ibuprofen" "metformin"

More often, however, it is useful to name the elements of the list for easier
access. Let’s create this list again but this time give names to each object.

ex_list <- list(name="John",
medications = c("ibuprofen", "metformin"),
past_weights = c(136, 142, 159))

print(ex_list)
#> $name
#> [1] "John"
#>
#> $medications
#> [1] "ibuprofen" "metformin"
#>
#> $past_weights
#> [1] 136 142 159
ex_list$medications
#> [1] "ibuprofen" "metformin"

To edit a list, we can use indexing to access different objects in the list and
then assign them to new values. Additionally, we can add objects to the list
using the $ accessor.

ex_list$supplements <- c("vitamin D", "biotin")
ex_list$supplements[2] <- "collagen"
ex_list

2.7 Exercises 31

#> $name
#> [1] "John"
#>
#> $medications
#> [1] "ibuprofen" "metformin"
#>
#> $past_weights
#> [1] 136 142 159
#>
#> $supplements
#> [1] "vitamin D" "collagen"

2.7 Exercises
1. Recreate the data frame in Figure 2.6 in R, where temperature

and co2 represent the average temperature in Fahrenheit and the
average CO2 concentrations in mg/m3 for the month of January
2008, and name it city_air_quality.

Figure 2.6: City Air Quality Data.

2. Create a character vector named precipitation with entries Yes
or No indicating whether or not there was more precipitation than

32 2 Data Structures in R

average in January 2008 in these cities (you can make this informa-
tion up yourself). Then, append this vector to the city_air_quality
data frame as a new column.

3. Convert the categorical column precipitation to a factor. Then,
add a row to the data frame city_air_quality using the rbind()
function to match Figure 2.7.

Figure 2.7: Updated City Air Quality Data.

4. Use single square brackets to access the precipitation and CO2 con-
centration entries for San Francisco and Paris in your data frame.
Then, create a list city_list which contains two lists, one for San
Francisco and one for Paris, where each inner list contains the city
name, precipitation, and CO2 concentration information for that
city.

3
Working with Data Files in R

In this chapter, we will be working with data in R. To start, we need to
load our data into R: this requires identifying the type of data file we have
(e.g. .csv, .xlsx, .dta) and finding the appropriate function to load in the data.
This will create a data frame object containing the information from the file.
After demonstrating how to load in such data, this chapter will show you
how to find information about data columns, including finding missing values,
summarizing columns, and subsetting the data. Additionally, we look at how
to create new columns through some simple transformations.

In this chapter and all future chapters, we will load in the required libraries
at the start of the chapter - for example, in this particular chapter, we need a
single package HDSinRdata that contains the sample data sets used in this
book.

library(HDSinRdata)

3.1 Importing and Exporting Data
The data we will use in this chapter contains information about patients who
visited one of the University of Pittsburgh’s seven pain management clin-
ics. This includes patient-reported pain assessments using the Collaborative
Health Outcomes Information Registry (CHOIR) at baseline and at a 3-month
follow-up (Alter et al. 2021). You can use the help operator ?pain to learn more
about the source of this data and to read its column descriptions. Since this
data is available in our R package, we can use the data() function to load
this data into our environment. Note that this data has 21,659 rows and 92
columns.

data(pain)
dim(pain)
#> [1] 21659 92

33

34 3 Working with Data Files in R

In general, the data you will be using will not be available in R packages
and will instead exist in one or more data files on your personal computer. In
order to load in this data to R, you need to use the function that corresponds
to the file type you have. For example, you can load a .csv file using the
read.csv() function in base R or using the read_csv() function from the
readr package, both of which were shown in Chapter 1. As an example, we
load the fake_names.csv dataset below using both of these functions: looking
at the print output below, we can see that there is slight difference in the
data structure and data types storing the data between these two functions.
The function read.csv() loads the data as a data frame, whereas the function
read_csv() loads the data as a spec_tbl_df, a special type of data frame
called a tibble that is used by the tidyverse packages. We will cover this
data structure in more detail in Chapter 5. For now, note that you can use
either function to read in a .csv file.

read.csv("data/fake_names.csv")
#> Name Age DOB City State
#> 1 Ken Irwin 37 6/28/85 Providence RI
#> 2 Delores Whittington 56 4/28/67 Smithfield RI
#> 3 Daniel Hughes 41 5/22/82 Providence RI
#> 4 Carlos Fain 83 2/2/40 Warren RI
#> 5 James Alford 67 2/23/56 East Providence RI
#> 6 Ruth Alvarez 34 9/22/88 Providence RI

readr::read_csv("data/fake_names.csv", show_col_types=FALSE)
#> # A tibble: 6 x 5
#> Name Age DOB City State
#> <chr> <dbl> <chr> <chr> <chr>
#> 1 Ken Irwin 37 6/28/85 Providence RI
#> 2 Delores Whittington 56 4/28/67 Smithfield RI
#> 3 Daniel Hughes 41 5/22/82 Providence RI
#> 4 Carlos Fain 83 2/2/40 Warren RI
#> 5 James Alford 67 2/23/56 East Providence RI
#> # i 1 more row

In addition to loading data into R, you may also want to save data from R
into a data file you can access later or share with others. To write a data frame
from R to a .csv file, you can use the write.csv() function. This function has
three key arguments: the first argument is the data frame in R that you want
to write to a file, the second argument is the file name or the full file path
where you want to write the data, and the third argument is whether or not
you want to include the row names as an extra column. In this case, we will

3.2 Summarizing and Creating Data Columns 35

not include row names. If you do not specify a file path, R will save the file
in our current working directory.

df <- data.frame(x=c(1,0,1), y=c("A", "B", "C"))
write.csv(df, "data/test.csv", row.names=FALSE)

If your data is not in a .csv file, you may need to use another package to read
in the file. The two most common packages are the readxl package (Wickham
and Bryan 2023), which makes it easy to read in Excel files, and the haven
package (Wickham, Miller, and Smith 2023), which can import SAS, SPSS,
and Stata files. For each function, you need to specify the file path to the data
file.

• Excel Files: You can read in a .xls or .xlsx file using readxl::read_excel(),
which allows you to specify a sheet and/or cell range within a file.
(e.g. read_excel('test.xlsx', sheet="Sheet1"))

• SAS: haven::read_sas() reads in .sas7bdat or .sas7bcat files,
haven::read_xpt() reads in SAS transport files

• Stata: haven::read_dta() reads in .dta files

• SPSS: haven::read_spss() reads in .spss files

3.2 Summarizing and Creating Data Columns
We will now look at the data we have loaded into the data frame called pain.
We use the head() function to print the first six rows. However, note that we
have so many columns that all not of the columns are displayed! For those
that are displayed, we can see the data type for each column under the col-
umn name. For example, we can see that the column PATIENT_NUM is a numeric
column of type dbl. Because patients identification numbers are technically
nominal in nature, we might consider whether we should make convert this col-
umn to a factor or a character representation later on. We can use the names()
function to print all the column names. Note that columns X101 to X238 cor-
respond to numbers on a body pain map (see the data documentation for the
image of this map). Each of these columns has a 1 if the patient indicated
that they have pain in that corresponding body part and a 0 otherwise.

head(pain)
#> # A tibble: 6 x 92
#> PATIENT_NUM X101 X102 X103 X104 X105 X106 X107 X108 X109

36 3 Working with Data Files in R

#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 13118 0 0 0 0 0 0 0 0 0
#> 2 21384 0 0 0 0 0 0 0 0 0
#> 3 6240 0 0 0 0 0 0 0 0 0
#> 4 1827 0 0 0 0 0 0 0 0 0
#> 5 11309 0 0 0 0 0 0 0 0 0
#> # i 1 more row
#> # i 82 more variables: X110 <dbl>, X111 <dbl>, X112 <dbl>, X113

<dbl>,↪

#> # X114 <dbl>, X115 <dbl>, X116 <dbl>, X117 <dbl>, X118 <dbl>,
#> # X119 <dbl>, X120 <dbl>, X121 <dbl>, X122 <dbl>, X123 <dbl>,
#> # X124 <dbl>, X125 <dbl>, X126 <dbl>, X127 <dbl>, X128 <dbl>,
#> # X129 <dbl>, X130 <dbl>, X131 <dbl>, X132 <dbl>, X133 <dbl>,
#> # X134 <dbl>, X135 <dbl>, X136 <dbl>, X201 <dbl>, X202 <dbl>, ...
names(pain)
#> [1] "PATIENT_NUM"
#> [2] "X101"
#> [3] "X102"
#> [4] "X103"
#> [5] "X104"
#> [6] "X105"
#> [7] "X106"
#> [8] "X107"
#> [9] "X108"
#> [10] "X109"
#> [11] "X110"
#> [12] "X111"
#> [13] "X112"
#> [14] "X113"
#> [15] "X114"
#> [16] "X115"
#> [17] "X116"
#> [18] "X117"
#> [19] "X118"
#> [20] "X119"
#> [21] "X120"
#> [22] "X121"
#> [23] "X122"
#> [24] "X123"
#> [25] "X124"
#> [26] "X125"
#> [27] "X126"
#> [28] "X127"

3.2 Summarizing and Creating Data Columns 37

#> [29] "X128"
#> [30] "X129"
#> [31] "X130"
#> [32] "X131"
#> [33] "X132"
#> [34] "X133"
#> [35] "X134"
#> [36] "X135"
#> [37] "X136"
#> [38] "X201"
#> [39] "X202"
#> [40] "X203"
#> [41] "X204"
#> [42] "X205"
#> [43] "X206"
#> [44] "X207"
#> [45] "X208"
#> [46] "X209"
#> [47] "X210"
#> [48] "X211"
#> [49] "X212"
#> [50] "X213"
#> [51] "X214"
#> [52] "X215"
#> [53] "X216"
#> [54] "X217"
#> [55] "X218"
#> [56] "X219"
#> [57] "X220"
#> [58] "X221"
#> [59] "X222"
#> [60] "X223"
#> [61] "X224"
#> [62] "X225"
#> [63] "X226"
#> [64] "X227"
#> [65] "X228"
#> [66] "X229"
#> [67] "X230"
#> [68] "X231"
#> [69] "X232"
#> [70] "X233"
#> [71] "X234"

38 3 Working with Data Files in R

#> [72] "X235"
#> [73] "X236"
#> [74] "X237"
#> [75] "X238"
#> [76] "PAIN_INTENSITY_AVERAGE"
#> [77] "PROMIS_PHYSICAL_FUNCTION"
#> [78] "PROMIS_PAIN_BEHAVIOR"
#> [79] "PROMIS_DEPRESSION"
#> [80] "PROMIS_ANXIETY"
#> [81] "PROMIS_SLEEP_DISTURB_V1_0"
#> [82] "PROMIS_PAIN_INTERFERENCE"
#> [83] "GH_MENTAL_SCORE"
#> [84] "GH_PHYSICAL_SCORE"
#> [85] "AGE_AT_CONTACT"
#> [86] "BMI"
#> [87] "CCI_TOTAL_SCORE"
#> [88] "PAIN_INTENSITY_AVERAGE.FOLLOW_UP"
#> [89] "PAT_SEX"
#> [90] "PAT_RACE"
#> [91] "CCI_BIN"
#> [92] "MEDICAID_BIN"

Recall that the $ operator can be used to access a single column. Alternatively,
we can use double brackets [[]] to select a column. Below, we demonstrate
both ways to print the first five values in the column with the patient’s average
pain intensity.

pain$PAIN_INTENSITY_AVERAGE[1:5]
#> [1] 7 5 4 7 8
pain[["PAIN_INTENSITY_AVERAGE"]][1:5]
#> [1] 7 5 4 7 8

3.2.1 Column Summaries
To explore the range and distribution of a column’s values, we can use some
of the base R functions. For example, the summary() function is a useful way
to summarize a numeric column’s values. Below, we can see that the pain
intensity values range from 0 to 10 with a median value of 7 and that there is
1 NA value.

3.2 Summarizing and Creating Data Columns 39

summary(pain$PAIN_INTENSITY_AVERAGE)
#> Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
#> 0.00 5.00 7.00 6.49 8.00 10.00 1

We have already seen the max(), min(), mean(), and median() functions that
could have computed some of these values for us separately. Since we do have
an NA value, we add the na.rm=TRUE argument to these functions. Without
this argument, the returned value for all of the functions will be NA.

min(pain$PAIN_INTENSITY_AVERAGE, na.rm=TRUE)
#> [1] 0
max(pain$PAIN_INTENSITY_AVERAGE, na.rm=TRUE)
#> [1] 10
mean(pain$PAIN_INTENSITY_AVERAGE, na.rm=TRUE)
#> [1] 6.49
median(pain$PAIN_INTENSITY_AVERAGE, na.rm=TRUE)
#> [1] 7

Additionally, the functions below are helpful for summarizing quantitative
columns.

• range() - returns the minimum and maximum values for a numeric vector x
• quantile() - returns the sample quantiles for a numeric vector
• IQR() - returns the interquartile range for a numeric vector

By default, the quantile() function returns the sample quantiles.

quantile(pain$PAIN_INTENSITY_AVERAGE, na.rm = TRUE)
#> 0% 25% 50% 75% 100%
#> 0 5 7 8 10

However, we can pass in a list of probabilities to use instead. For example,
below we find the 0.1 and 0.9 quantiles. Again, we add the na.rm=TRUE argu-
ment.

quantile(pain$PAIN_INTENSITY_AVERAGE, probs = c(0.1, 0.9), na.rm=TRUE)
#> 10% 90%
#> 4 9

We can also plot a histogram of the sample distribution using the hist() func-
tion. We will look more in depth at how to change aspects of this histogram
in Chapter 4.

40 3 Working with Data Files in R

hist(pain$PAIN_INTENSITY_AVERAGE)

Histogram of pain$PAIN_INTENSITY_AVERAGE

pain$PAIN_INTENSITY_AVERAGE

F
re

qu
en

cy

0 2 4 6 8 10

0
20

00
40

00

3.2.2 Practice Question
Summarize the PROMIS_SLEEP_DISTURB_V1_0 column both numerically and vi-
sually. Your results should look like the results in Figure 3.1.

Insert your solution here:

We can also use the summary() function for categorical variables. In this case,
R will find the counts for each level.

summary(pain$PAT_SEX)
#> Length Class Mode
#> 21659 character character

For categorical columns, it is also useful to use the table() function, which
returns the counts for each possible value, instead of the summary() function.
By default, table() ignores NA values. However, we can set useNA="always"
if we also want to display the number of NA values in the table output. Ad-
ditionally, we can use the prop.table() function to convert the counts to
proportions. Below, we can see that the column PAT_SEX column, which cor-
responds to the reported patient sex, has a single missing value, and we can
also see that around 60% of patients are female.

3.2 Summarizing and Creating Data Columns 41

Figure 3.1: Summarizing a Column.

table(pain$PAT_SEX, useNA="always")
#>
#> female male <NA>
#> 13102 8556 1

prop.table(table(pain$PAT_SEX))
#>
#> female male
#> 0.605 0.395

Note that this column is not actually a factor column yet, which we can check
using the is.factor() function. We can convert it to one using as.factor().

42 3 Working with Data Files in R

is.factor(pain$PAT_SEX)
#> [1] FALSE

pain$PAT_SEX <- as.factor(pain$PAT_SEX)
is.factor(pain$PAT_SEX)
#> [1] TRUE

3.2.3 Other Summary Functions
Sometimes we want to summarize information across multiple columns or
rows. We can use the rowSums() and colSums() functions to sum over the
rows or columns of a matrix or data frame. We first subset the data to the
body pain map regions. In the first line of code, I select the column names
pertaining to these columns. This allows me to select those columns in the
second line of code and store this subset of the data as a new data frame called
pain_body_map.

body_map_cols <- names(pain)[2:75]
pain_body_map <- pain[, body_map_cols]
head(pain_body_map)
#> # A tibble: 6 x 74
#> X101 X102 X103 X104 X105 X106 X107 X108 X109 X110 X111
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 0 0 0 0 0 0 0 0 0 0 0
#> 2 0 0 0 0 0 0 0 0 0 0 0
#> 3 0 0 0 0 0 0 0 0 0 0 0
#> 4 0 0 0 0 0 0 0 0 0 0 0
#> 5 0 0 0 0 0 0 0 0 0 0 0
#> # i 1 more row
#> # i 63 more variables: X112 <dbl>, X113 <dbl>, X114 <dbl>, X115

<dbl>,↪

#> # X116 <dbl>, X117 <dbl>, X118 <dbl>, X119 <dbl>, X120 <dbl>,
#> # X121 <dbl>, X122 <dbl>, X123 <dbl>, X124 <dbl>, X125 <dbl>,
#> # X126 <dbl>, X127 <dbl>, X128 <dbl>, X129 <dbl>, X130 <dbl>,
#> # X131 <dbl>, X132 <dbl>, X133 <dbl>, X134 <dbl>, X135 <dbl>,
#> # X136 <dbl>, X201 <dbl>, X202 <dbl>, X203 <dbl>, X204 <dbl>, ...

I now compute the row sums and column sums on this subset of data. The
row sum for each patient is the total number of body parts in which they
experience pain, whereas the column sum for each pain region is the total

3.2 Summarizing and Creating Data Columns 43

number of patients who experience pain in that area. The histogram below
shows that most people select a low number of total regions.

hist(rowSums(pain_body_map))

Histogram of rowSums(pain_body_map)

rowSums(pain_body_map)

F
re

qu
en

cy

0 20 40 60

0
40

00
80

00

We can also see that some body parts are more often selected than others.
We create a vector called perc_patients below by finding the number of pa-
tients who selected each region divided by the total number of patients. The
histogram shows that some body regions are selected by over 50% of patients!

perc_patients <- colSums(pain_body_map, na.rm=TRUE) /
nrow(pain_body_map)

hist(perc_patients)

44 3 Working with Data Files in R

Histogram of perc_patients

perc_patients

F
re

qu
en

cy

0.0 0.1 0.2 0.3 0.4 0.5

0
5

15
25

We use the which.max() function to see that the 55th region X219 is selected
the most number of times. This corresponds to lower back pain.

which.max(perc_patients)
#> X219
#> 55

Another pair of useful functions are pmin() and pmax(). These functions take
at least two vectors and find the pairwise minimum of maximum across those
vectors, as shown below. For example, suppose you had two vectors,

v1 = c(5, 9, 12)
v2 = c(2, 18, 4)
pmax(v1, v2)
#> [1] 5 18 12

Looking back at the pain data, if we want to create a new column
lower_back_pain that corresponds to whether someone selects either X218
or X219 we can use the pmax() function to find the maximum value between
columns X218 and X219. We can see that almost 60% of patients select at least
one of these regions.

lower_back <- pmax(pain_body_map$X218, pain_body_map$X219)
prop.table(table(lower_back))
#> lower_back

3.2 Summarizing and Creating Data Columns 45

#> 0 1
#> 0.405 0.595

We might want to store the total number of pain regions and our indicator
of whether or not a patient has lower back pain as new columns. We use our
code above to create new columns in the pain data using the $ operator. To
be consistent with the column naming in the data, we use all upper case for
our column names. The dim() function shows that our data has grown by two
columns, as expected.

pain$NUM_REGIONS <- rowSums(pain_body_map)
pain$LOWER_BACK <- lower_back
dim(pain)
#> [1] 21659 94

Another useful function that allows us to perform computations over the rows
or columns of a matrix or data frame is the apply(X, MARGIN, FUN) function,
which takes in three arguments. The first argument is a data frame or matrix
X, the second argument MARGIN indicates whether to compute over the rows (1)
or columns (2), and the last argument is the function FUN to apply across that
margin. The first example below finds the maximum value for each row in the
data frame pain_body_map. Taking the minimum value of the row maximum
values shows that every patient selected at least one body map region. In the
second example, we find the sum of the body pain regions over the columns,
which is equivalent to the example using colSums() above. In this case, we
added the na.rm=TRUE argument. The apply() function will pass additional
arguments to the function FUN.

any_selected <- apply(pain_body_map, 1, max)
min(any_selected, na.rm=TRUE)
#> [1] 1

perc_patients <- apply(pain_body_map, 2, sum, na.rm=TRUE) /
nrow(pain_body_map)

summary(perc_patients)
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> 0.032 0.070 0.136 0.144 0.181 0.542

46 3 Working with Data Files in R

3.2.4 Practice Question
Find the sum of each of the PROMIS measures across all patients using ap-
ply() and then using colSums(). Verify that these two methods return the
same result, which is given in Figure 3.2.

Figure 3.2: Summing Across Columns.

Insert your solution here:

3.2.5 Missing, Infinite, and NaN Values
As we saw above, this data contains some missing values, which are represented
as NA in R. R treats these values as if they were unknown, which is why we
have to add the na.rm=TRUE argument to functions like sum() and max(). In the
example below, we can see that R figures out that 1 plus an unknown number
is also unknown!

NA+1
#> [1] NA

We can determine whether a value is missing using the function is.na(). This
function returns TRUE if the value is NA and FALSE otherwise. We can then
sum up these values for a single column, since each TRUE value corresponds to
a value of 1 and each FALSE corresponds to a value of 0. Below we can see that
there is a single NA value for the column PATIENT_NUM, which is the patient
ID number.

sum(is.na(pain$PATIENT_NUM))
#> [1] 1

If we want to calculate the sum of NA values for each column instead of just
a single column, we can use the apply() function. Since we want to apply this
computation over the columns, the second argument has value 2. Recall that
the last argument is the function we want to call for each column. In this case,
we want to apply the combination of the sum() and is.na() function. To do
so, we have to specify this function ourselves. This is called an anonymous
function since it doesn’t have a name.

3.2 Summarizing and Creating Data Columns 47

num_missing_col <- apply(pain, 2, function(x) sum(is.na(x)))
min(num_missing_col)
#> [1] 1

Interestingly, we can see that there is at least one missing value in each column.
It might be the case that there is a row with all NA values. Let’s apply the
same function by row. Taking the maximum, we can see that row 11749 has
all NA values.

num_missing_row <- apply(pain, 1, function(x) sum(is.na(x)))
max(num_missing_row)
#> [1] 94
which.max(num_missing_row)
#> [1] 11749

We remove that row and then find the percentage of missing values by column.
We can see that the column with the highest percentage of missing values is
the pain intensity at follow-up. In fact, only 33% of patients have a recorded
follow-up visit.

pain <- pain[-11749,]
num_missing_col <- apply(pain, 2,

function(x) sum(is.na(x))/nrow(pain))
num_missing_col
#> PATIENT_NUM X101
#> 0.00000 0.00000
#> X102 X103
#> 0.00000 0.00000
#> X104 X105
#> 0.00000 0.00000
#> X106 X107
#> 0.00000 0.00000
#> X108 X109
#> 0.00000 0.00000
#> X110 X111
#> 0.00000 0.00000
#> X112 X113
#> 0.00000 0.00000
#> X114 X115
#> 0.00000 0.00000
#> X116 X117
#> 0.00000 0.00000

48 3 Working with Data Files in R

#> X118 X119
#> 0.00000 0.00000
#> X120 X121
#> 0.00000 0.00000
#> X122 X123
#> 0.00000 0.00000
#> X124 X125
#> 0.00000 0.00000
#> X126 X127
#> 0.00000 0.00000
#> X128 X129
#> 0.00000 0.00000
#> X130 X131
#> 0.00000 0.00000
#> X132 X133
#> 0.00000 0.00000
#> X134 X135
#> 0.00000 0.00000
#> X136 X201
#> 0.00000 0.00000
#> X202 X203
#> 0.00000 0.00000
#> X204 X205
#> 0.00000 0.00000
#> X206 X207
#> 0.00000 0.00000
#> X208 X209
#> 0.00000 0.00000
#> X210 X211
#> 0.00000 0.00000
#> X212 X213
#> 0.00000 0.00000
#> X214 X215
#> 0.00000 0.00000
#> X216 X217
#> 0.00000 0.00000
#> X218 X219
#> 0.00000 0.00000
#> X220 X221
#> 0.00000 0.00000
#> X222 X223
#> 0.00000 0.00000
#> X224 X225

3.2 Summarizing and Creating Data Columns 49

#> 0.00000 0.00000
#> X226 X227
#> 0.00000 0.00000
#> X228 X229
#> 0.00000 0.00000
#> X230 X231
#> 0.00000 0.00000
#> X232 X233
#> 0.00000 0.00000
#> X234 X235
#> 0.00000 0.00000
#> X236 X237
#> 0.00000 0.00000
#> X238 PAIN_INTENSITY_AVERAGE
#> 0.00000 0.00000
#> PROMIS_PHYSICAL_FUNCTION PROMIS_PAIN_BEHAVIOR
#> 0.00000 0.29412
#> PROMIS_DEPRESSION PROMIS_ANXIETY
#> 0.00402 0.00402
#> PROMIS_SLEEP_DISTURB_V1_0 PROMIS_PAIN_INTERFERENCE
#> 0.00402 0.00697
#> GH_MENTAL_SCORE GH_PHYSICAL_SCORE
#> 0.13602 0.13602
#> AGE_AT_CONTACT BMI
#> 0.00000 0.26004
#> CCI_TOTAL_SCORE PAIN_INTENSITY_AVERAGE.FOLLOW_UP
#> 0.00000 0.67042
#> PAT_SEX PAT_RACE
#> 0.00000 0.00651
#> CCI_BIN MEDICAID_BIN
#> 0.00000 0.01385
#> NUM_REGIONS LOWER_BACK
#> 0.00000 0.00000

We will create two new columns: first, we create a column for the change in
pain at follow-up, and second, we create a column which is the percent change
in pain at follow-up.

pain$PAIN_CHANGE <- pain$PAIN_INTENSITY_AVERAGE.FOLLOW_UP -
pain$PAIN_INTENSITY_AVERAGE

hist(pain$PAIN_CHANGE)

50 3 Working with Data Files in R

Histogram of pain$PAIN_CHANGE

pain$PAIN_CHANGE

F
re

qu
en

cy

−10 −5 0 5

0
50

0
15

00

pain$PERC_PAIN_CHANGE <- pain$PAIN_CHANGE/pain$PAIN_INTENSITY_AVERAGE
summary(pain$PERC_PAIN_CHANGE)
#> Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
#> -1 0 0 Inf 0 Inf 14520

In the summary of the percent change, we can see that the maximum value
is Inf. This is R’s representation of infinity. This occurred because some pa-
tients have an initial pain score of 0, which creates infinite values when we
divide through by this value to find the percent change. We can test whether
something is infinite using the is.infinite() or is.finite() functions. This
shows that there were three patients with infinite values. The value -Inf is
used to represent negative infinity.

sum(is.infinite(pain$PERC_PAIN_CHANGE))
#> [1] 3

Another special value in R is NaN, which stands for “Not a Number”. For
example, 0/0 will result in a NaN value. We can test for NaN values using the
is.nan() function.

0/0
#> [1] NaN

Looking back at the missing values, there are two useful functions for select-
ing the complete cases in a data frame. The na.omit() function returns the

3.3 Using Logic to Subset, Summarize, and Transform 51

data frame with incomplete cases removed, whereas complete.cases() returns
TRUE/FALSE values for each row indicating whether each row is complete,
which we can then use to select the rows with TRUE values. Below, we see
both approaches select the same number of rows.

pain_sub1 <- na.omit(pain)
pain_sub2 <- pain[complete.cases(pain),]
dim(pain_sub1)
#> [1] 2413 96
dim(pain_sub2)
#> [1] 2413 96

3.3 Using Logic to Subset, Summarize, and Transform
Above, we used TRUE/FALSE values to select rows in a data frame. The logic
operators in R allow us to expand on this capability to write more complex
logic. The operators are given below.

• < less than
• <= less than or equal to
• > greater than
• >= greater than or equal to
• == equal to
• != not equal to
• a %in% b a’s value is in a vector of values b

The first six operators are a direct comparison between two values and are
demonstrated below.

2 < 2
#> [1] FALSE
2 <= 2
#> [1] TRUE
3 > 2
#> [1] TRUE
3 >= 2
#> [1] TRUE
"A" == "B"
#> [1] FALSE
"A" != "B"
#> [1] TRUE

52 3 Working with Data Files in R

The operators assume there is a natural ordering or comparison between values.
For example, for strings the ordering is alphabetical and for logical operators
we use their numeric interpretation (TRUE = 1, FALSE = 0).

"A" < "B"
#> [1] TRUE
TRUE < FALSE
#> [1] FALSE

The %in% operator is slightly different. This operator checks whether a value
is in a set of possible values. Below, we can check whether values are in the
set c(4,1,2).

1 %in% c(4,1,2)
#> [1] TRUE
c(0,1,5) %in% c(4,1,2)
#> [1] FALSE TRUE FALSE

Additionally, we can use the following operators, which allow us to negate or
combine logical operators.

• !x - the NOT operator ! reverses TRUE/FALSE values
• x | y - the OR operator | checks whether either x or y is equal to TRUE
• x & y - the AND operator & checks whether both x and y are equal to TRUE
• xor(x,y) - the xor function checks whether exactly one of x or y is equal to

TRUE (called exclusive or)
• any(x) - the any function checks whether any value in x is TRUE (equivalent

to using an OR operator | between all values)
• all(x) - the all function checks whether all values in x are TRUE (equivalent

to using an AND operator & between all values)

Some simple examples for each are given below.

!(2 < 3)
#> [1] FALSE
("Alice" < "Bob") | ("Alice" < "Aaron")
#> [1] TRUE
("Alice" < "Bob") & ("Alice" < "Aaron")
#> [1] FALSE
xor(TRUE, FALSE)
#> [1] TRUE
any(c(FALSE, TRUE, TRUE))
#> [1] TRUE

3.3 Using Logic to Subset, Summarize, and Transform 53

all(c(FALSE, TRUE, TRUE))
#> [1] FALSE

Let’s demonstrate these operators on the pain data. We first update the Med-
icaid column by making the character values more informative. The logic on
the left hand side selects those that do or do not have Medicaid and then
assigns those values to the new ones.

pain$MEDICAID_BIN[pain$MEDICAID_BIN == "no"] <- "No Medicaid"
pain$MEDICAID_BIN[pain$MEDICAID_BIN == "yes"] <- "Medicaid"
table(pain$MEDICAID_BIN)
#>
#> Medicaid No Medicaid
#> 4601 16757

Additionally, we could subset the data to only those who have follow-up.
The not operator ! will reverse the TRUE/FALSE values returned from the
is.na() function. Therefore, the new value will be TRUE if the follow-up value
is not NA.

pain_follow_up <- pain[!is.na(pain$PAIN_INTENSITY_AVERAGE.FOLLOW_UP),]

Earlier, we created a column indicating whether or not a patient has lower back
pain. We now use the any() function to check whether a patient has general
back pain. If at least one of these values is equal to 1, then the function will
return TRUE. If we had used the all() function instead, this would check
whether all values are equal to 1, indicating that a patient has pain on their
whole back.

pain$BACK <- any(pain$X208==1, pain$X209==1, pain$X212==1,
pain$X213==1, pain$X218==1, pain$X219==1)

3.3.1 Practice Question
Subset the pain data to those who have follow-up and have an initial average
pain intensity of 5 or above. Name this subset of the data pain_subset. Print
the head of this data. The first 6 patient IDs in this new dataset should be
13118, 21384, 1827, 11309, 11093, and 14667.

54 3 Working with Data Files in R

Insert your solution here:

Lastly, we look at the column for patient race PAT_RACE. The table() function
shows that most patients are WHITE or BLACK. Given how few observations are
in the other categories, we may want to combine some of these levels into one.

table(pain$PAT_RACE)
#>
#> ALASKA NATIVE AMERICAN INDIAN BLACK
#> 2 58 3229
#> CHINESE DECLINED FILIPINO
#> 21 121 6
#> GUAM/CHAMORRO HAWAIIAN INDIAN (ASIAN)
#> 1 1 49
#> JAPANESE KOREAN NOT SPECIFIED
#> 9 10 4
#> OTHER OTHER ASIAN OTHER PACIFIC ISLANDER
#> 1 47 12
#> VIETNAMESE WHITE
#> 6 17940

Another way we could have found all possible values for this column is to use
the unique() function. This function takes in a data frame or vector x and
returns x with all duplicate rows or values removed.

unique(pain$PAT_RACE)
#> [1] "WHITE" "BLACK"
#> [3] "DECLINED" "AMERICAN INDIAN"
#> [5] "INDIAN (ASIAN)" "ALASKA NATIVE"
#> [7] NA "FILIPINO"
#> [9] "JAPANESE" "VIETNAMESE"
#> [11] "KOREAN" "CHINESE"
#> [13] "OTHER ASIAN" "NOT SPECIFIED"
#> [15] "HAWAIIAN" "OTHER PACIFIC ISLANDER"
#> [17] "OTHER" "GUAM/CHAMORRO"

To combine some of these levels, we can use the %in% operator. We first create
an Asian, Asian American, or Pacific Islander race category and then create
an American Indian or Alaska Native category.

3.3 Using Logic to Subset, Summarize, and Transform 55

aapi_values <- c("CHINESE", "HAWAIIAN", "INDIAN (ASIAN)", "FILIPINO",
"VIETNAMESE", "JAPANESE", "KOREAN", "GUAM/CHAMORRO",
"OTHER ASIAN", "OTHER PACIFIC ISLANDER")

pain$PAT_RACE[pain$PAT_RACE %in% aapi_values] <- "AAPI"
pain$PAT_RACE[pain$PAT_RACE %in%

c("ALASKA NATIVE", "AMERICAN INDIAN")] <- "AI/AN"
table(pain$PAT_RACE)
#>
#> AAPI AI/AN BLACK DECLINED NOT SPECIFIED
#> 162 60 3229 121 4
#> OTHER WHITE
#> 1 17940

3.3.2 Other Selection Functions
Above, we selected rows using TRUE/FALSE boolean values. Instead, we
could have also used the which() function. This function takes TRUE/FALSE
values and returns the index values for all the TRUE values. We use this to
treat those with race given as DECLINED as not specified.

pain$PAT_RACE[which(pain$PAT_RACE == "DECLINED")] <- "NOT SPECIFIED"

Another selection function is the subset() function. This function takes in two
arguments. The first is the vector, matrix, or data frame to select from and
the second is a vector of TRUE/FALSE values to use for row selection. We
use this to find the observation with race marked as OTHER. We then update
this race to also be marked as not specified.

subset(pain, pain$PAT_RACE == "OTHER")
#> # A tibble: 1 x 97
#> PATIENT_NUM X101 X102 X103 X104 X105 X106 X107 X108 X109
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 3588 1 1 1 0 1 1 1 0 0
#> # i 87 more variables: X110 <dbl>, X111 <dbl>, X112 <dbl>, X113

<dbl>,↪

#> # X114 <dbl>, X115 <dbl>, X116 <dbl>, X117 <dbl>, X118 <dbl>,
#> # X119 <dbl>, X120 <dbl>, X121 <dbl>, X122 <dbl>, X123 <dbl>,
#> # X124 <dbl>, X125 <dbl>, X126 <dbl>, X127 <dbl>, X128 <dbl>,
#> # X129 <dbl>, X130 <dbl>, X131 <dbl>, X132 <dbl>, X133 <dbl>,
#> # X134 <dbl>, X135 <dbl>, X136 <dbl>, X201 <dbl>, X202 <dbl>,
#> # X203 <dbl>, X204 <dbl>, X205 <dbl>, X206 <dbl>, X207 <dbl>, ...

56 3 Working with Data Files in R

pain$PAT_RACE[pain$PATIENT_NUM==3588] <- "NOT SPECIFIED"
table(pain$PAT_RACE)
#>
#> AAPI AI/AN BLACK NOT SPECIFIED WHITE
#> 162 60 3229 126 17940

3.4 Exercises
For these exercises, we will again be using the pain data from the HDSinR-
data package.

1. Print summary statistics for the PROMIS_PHYSICAL_FUNTION and
PROMIS_ANXIETY columns in this dataset. Read the data documen-
tation for these two columns, which both have range 0 to 100, and
then comment on the distributions of these columns.

2. Create frequency tables for the values of PAT_SEX and PAT_RACE and
summarize what these tables tell you about the distributions of
these demographic characteristics.

3. Create a new data frame called pain.new that doesn’t con-
tain patients with NA values for both GH_MENTAL_SCORE and
GH_PHYSICAL_SCORE, which are the PROMIS global mental and phys-
ical scores, respectively.

4. Create a vector of the proportion of patients who reported pain in
each of the pain regions. Then, find the minimum, median, mean,
maximum, standard deviation, and variance of this vector.

5. Calculate the median and interquartile range of the distribution of
the total number of painful leg regions selected for each patient.
Then, write a few sentences explaining anything interesting you
observe about this distribution in the context of this dataset.

6. Look at the distribution of average pain intensity between patients
with only one pain region selected vs. those with more than one
region selected. What do you notice?

7. Create a histogram to plot the distribution of the
PAIN_INTENSITY_AVERAGE.FOLLOW_UP column. Then, create a ta-
ble summarizing how many patients had missing values in this
column. Finally, choose two columns to compare the distribution

3.4 Exercises 57

between those with and without missing follow up. What do you
notice?

Part II

Exploratory Analysis

4
Intro to Exploratory Data Analysis

In the last chapter, we learned about loading data into R and practiced select-
ing and summarizing columns and rows of the data. In this chapter, we will
learn how to conduct more exploratory analysis, focusing on the univariate
and bivariate sample distributions of the data. The first half focuses on using
base R to create basic plots and summaries. In the second half, we show how
to create summary plots using the GGally package (Schloerke et al. 2021)
and tables using the gt (Iannone et al. 2023) and gtsummary (Sjoberg et al.
2023) packages.

library(HDSinRdata)
library(GGally)
library(gt)
library(gtsummary)

4.1 Univariate Distributions
In this chapter, we will use a sample of the National Health and Nutrition Ex-
amination Survey (Centers for Disease Control and Prevention (CDC) 1999-
2018) containing lead, blood pressure, BMI, smoking status, alcohol use, and
demographic variables from NHANES 1999-2018. Variable selection and fea-
ture engineering followed the analysis in Huang (2022). There are 31,625 ob-
servations in this sample. Use the help operator ?NHANESsample to read the
column descriptions.

data(NHANESsample)
dim(NHANESsample)
#> [1] 31265 21
names(NHANESsample)
#> [1] "ID" "AGE" "SEX" "RACE"
#> [5] "EDUCATION" "INCOME" "SMOKE" "YEAR"

61

62 4 Intro to Exploratory Data Analysis

#> [9] "LEAD" "BMI_CAT" "LEAD_QUANTILE" "HYP"
#> [13] "ALC" "DBP1" "DBP2" "DBP3"
#> [17] "DBP4" "SBP1" "SBP2" "SBP3"
#> [21] "SBP4"

To start our exploration, we will look at whether there are any missing values.
We use the complete.cases() function to observe that there are no complete
cases. We also see that the subsequent blood pressure measurements and alco-
hol use have the highest percentage of missing values. For demonstration, we
choose to only keep the first systolic an diastolic blood pressure measurements
and do a complete case analysis using the na.omit() function to define our
complete data frame nhanes_df.

sum(complete.cases(NHANESsample))
#> [1] 0
apply(NHANESsample, 2, function(x) sum(is.na(x)))/nrow(NHANESsample)
#> ID AGE SEX RACE EDUCATION
#> 0.000000 0.000000 0.000000 0.000000 0.000672
#> INCOME SMOKE YEAR LEAD BMI_CAT
#> 0.000000 0.000000 0.000000 0.000000 0.000000
#> LEAD_QUANTILE HYP ALC DBP1 DBP2
#> 0.000000 0.000000 0.026867 0.060035 0.063905
#> DBP3 DBP4 SBP1 SBP2 SBP3
#> 0.070974 0.891124 0.060035 0.063905 0.070942
#> SBP4
#> 0.891124

nhanes_df <- na.omit(subset(NHANESsample,
select= -c(SBP2, SBP3, SBP4, DBP2, DBP3,

DBP4)))

In the last chapter, we introduced the table() and summary() functions to
quickly summarize categorical and quantitative vectors. We can observe that
over half of the observations never smoked and that the most recent NHANES
cycle in the data is 2017-2018.

table(nhanes_df$SMOKE)
#>
#> NeverSmoke QuitSmoke StillSmoke
#> 13774 8019 6799
summary(nhanes_df$YEAR)

4.1 Univariate Distributions 63

#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> 1999 2003 2007 2008 2011 2017

We decide to select the most recent observations from NHANES 2017-2018
for our analysis in this chapter. We use the subset() function to select these
rows.

nhanes_df <- subset(nhanes_df, nhanes_df$YEAR==2017)

As shown above, smoking status has been coded into three categories: “Nev-
erSmoke”, “QuitSmoke”, and “StillSmoke”. We want to create a new column
to represent whether someone has ever smoked. To do so, we use the ifelse()
function, which allows us to create a new vector using logic. The logic captured
by this function is that we will take one value if we meet some condition(s)
and we will take a second value otherwise. The first argument is a vector of
TRUE/FALSE values representing the conditions, the next argument is the
value to use if we meet the condition(s), and the last argument is the value
to use otherwise. We use this function to create a new vector EVER_SMOKE that
is equal to “Yes” for those who are either still smoking or quit smoking and
equal to “No” otherwise.

nhanes_df$EVER_SMOKE <- ifelse(nhanes_df$SMOKE %in% c("QuitSmoke",
"StillSmoke"),

"Yes", "No")
table(nhanes_df$EVER_SMOKE)
#>
#> No Yes
#> 1411 1173

The summary() and table() functions allow us to summarize the univariate
sample distributions of columns. We may also want to plot these distributions.
We saw in Chapter 3 that the hist() function creates a histogram plot. Below
we use this function to plot a histogram of the log transformation of the lead
column.

hist(log(nhanes_df$LEAD))

64 4 Intro to Exploratory Data Analysis

Histogram of log(nhanes_df$LEAD)

log(nhanes_df$LEAD)

F
re

qu
en

cy

−3 −2 −1 0 1 2 3

0
20

0
40

0
60

0

If we want to polish this figure, we can use some of the other optional ar-
guments to the hist() function. For example, we may want to update the
text log(nhanes_df$lead) in the title and x-axis. Below, we update the color,
labels, and number of bins for the plot. The function colors() returns all rec-
ognized colors in R. The argument breaks specifies the number of bins to use
to create the histogram, col specifies the color, main specifies the title of the
plot, and xlab specifies the x-axis label (using ylab would specify the y-axis
label). Read the documentation ?hist for the full list of arguments available.

hist(log(nhanes_df$LEAD), breaks = 30, col="blue",
main="Histogram of Log Blood Lead Level",
xlab="Log Blood Lead Level")

4.1 Univariate Distributions 65

Histogram of Log Blood Lead Level

Log Blood Lead Level

F
re

qu
en

cy

−3 −2 −1 0 1 2 3

0
10

0
20

0
30

0

For categorical columns, we may want to plot the counts in each category using
a bar plot. The function barplot() asks us to specify the names and heights of
the bars. To do so, we will need to store the counts for each category. Again,
we update the color and labels.

smoke_counts <- table(nhanes_df$SMOKE)
barplot(height=smoke_counts, names=names(smoke_counts),

col="violetred", xlab="Smoking Status", ylab="Frequency")

NeverSmoke QuitSmoke StillSmoke

Smoking Status

F
re

qu
en

cy

0
40

0
80

0
12

00

With a bar plot, we can even specify a different color for each bar. To do so,
col must be a vector of specified colors with the same length as the number
of categories.

66 4 Intro to Exploratory Data Analysis

barplot(height=smoke_counts, names=names(smoke_counts),
col=c("orange","violetred","blue"),
xlab="Smoking Status", ylab="Frequency")

NeverSmoke QuitSmoke StillSmoke

Smoking Status

F
re

qu
en

cy

0
40

0
80

0
12

00

4.1.1 Practice Question
Recreate the barplot in Figure 4.1 showing the proportion of values in each
LEAD_QUANTILE category.

Insert your solution here:

4.2 Bivariate Distributions
We now turn our attention to relationships among multiple columns. When
we have two categorical columns, we can use the table() function to find the
counts across all combinations. For example, below we look at the distribution
of smoking status levels by sex. We observe that a higher percentage of female
participants have never smoked.

table(nhanes_df$SMOKE, nhanes_df$SEX)
#>
#> Male Female
#> NeverSmoke 596 815

4.2 Bivariate Distributions 67

Figure 4.1: Lead Quantile Bar Plot.

#> QuitSmoke 390 241
#> StillSmoke 324 218

To look at the sample distribution of a continuous column stratified by a
cateogrical column, we could call the summary() function for each subset of
the data. Below we look at the distribution of blood lead level by sex and
observe higher blood lead levels in male observations.

summary(nhanes_df$LEAD[nhanes_df$SEX=="Female"])
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> 0.10 0.47 0.77 0.98 1.21 8.67
summary(nhanes_df$LEAD[nhanes_df$SEX=="Male"])
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> 0.05 0.70 1.09 1.46 1.66 22.01

We could also observe this visually through a box plot. When given one cate-
gorical column and one continuous column, the plot() function creates a box
plot. By default, the first argument is the x-axis and second argument is the
y-axis.

68 4 Intro to Exploratory Data Analysis

plot(nhanes_df$SEX, log(nhanes_df$LEAD), ylab="Log Blood Lead Level",
xlab="Sex")

Male Female

−
3

−
1

1
2

3

Sex

Lo
g

B
lo

od
 L

ea
d

Le
ve

l

Alternatively, we could use the boxplot() function, which can be passed a
formula. A formula is a string representation of how to group the data, where
the left hand side is the continuous column and the right hand side is one or
more categorical columns to group by. In the case below, we group by multiple
columns, SEX and EVER_SMOKE, so our formula is log(LEAD)~SEX+EVER_SMOKE.
The second argument to the function specifies the data. We specify the column
colors to show the link between the box plots shown.

boxplot(log(LEAD)~SEX+EVER_SMOKE, data=nhanes_df,
col=c("orange", "blue", "orange", "blue"),
xlab="Sex : Ever Smoked", ylab = "Log Blood Lead Level")

Male.No Female.No Male.Yes Female.Yes

−
3

−
1

1
2

3

Sex : Ever Smoked

Lo
g

B
lo

od
 L

ea
d

Le
ve

l

4.2 Bivariate Distributions 69

To visualize the bivariate distributions between two continuous columns, we
can use scatter plots. To create a scatter plot, we use the plot() function
again. Below, we use this function to show the relationship between systolic
and diastolic blood pressure.

plot(nhanes_df$SBP1, nhanes_df$DBP1, col="blue",
xlab="Systolic Blood Pressure",
ylab="Diastolic Blood Pressure")

100 120 140 160 180 200 220

0
40

80
12

0

Systolic Blood Pressure

D
ia

st
ol

ic
 B

lo
od

 P
re

ss
ur

e

The two measures of blood pressure look highly correlated. We can calculate
their Pearson and Spearman correlation using the cor() function. The default
method is the Pearson correlation, but we can also calculate the Kendall or
Spearman correlation by specifying the method.

cor(nhanes_df$SBP1, nhanes_df$DBP1)
#> [1] 0.417
cor(nhanes_df$SBP1, nhanes_df$DBP1, method="spearman")
#> [1] 0.471

We may also want to add some extra information to our plot above. This time,
instead of specifying the color manually, we use the column hyp, an indicator
for hypertension, to specify the color. We have to make sure this vector is
a factor for R to color by group. Additionally, we add a blue vertical and
horizontal line using the abline() function to mark cutoffs for hypertension.
Even though this function is called after plot(), the lines are automatically
added to the current plot. We can see that most of those with hypertension
have systolic or diastolic blood pressure measurements above this threshold.

70 4 Intro to Exploratory Data Analysis

plot(nhanes_df$SBP1, nhanes_df$DBP1, col=as.factor(nhanes_df$HYP),
xlab="Systolic Blood Pressure",
ylab="Diastolic Blood Pressure")

abline(v=130, col="blue")
abline(h=80, col="blue")

100 120 140 160 180 200 220

0
40

80
12

0

Systolic Blood Pressure

D
ia

st
ol

ic
 B

lo
od

 P
re

ss
ur

e

The plots above are all displayed as a single figure. If we want to display
multiple plots next to each other, we can specify the graphical parameters
using the par() function by updating the argument mfrow=c(nrow, ncol) with
the number of columns and rows we would like to use for our figures. Below,
we use this to display the distribution of log blood lead level between those
with and without hypertension next to the plot from above.

par(mfrow=c(1,2))

boxplot
boxplot(log(LEAD)~HYP, data=nhanes_df, xlab="Hypertension",

ylab="Log Blood Lead Level")

scatterplot
plot(nhanes_df$SBP1, nhanes_df$DBP1, col=as.factor(nhanes_df$HYP),

xlab="Systolic Blood Pressure",
ylab="Diastolic Blood Pressure")

abline(v=130, col="blue")
abline(h=80, col="blue")

4.3 Autogenerated Plots 71

0 1

−
3

−
1

1
2

3

Hypertension

Lo
g

B
lo

od
 L

ea
d

Le
ve

l

100 140 180 220

0
40

80
12

0

Systolic Blood Pressure

D
ia

st
ol

ic
 B

lo
od

 P
re

ss
ur

e
We then reset to only display a single plot for future images using the par()
function again.

par(mfrow=c(1,1))

4.2.1 Practice Question
Recreate the three boxplots in Figure 4.2 (one for each education level) of
income by BMI category and arrange them next to each other using the par()
function.

Insert your solution here:

4.3 Autogenerated Plots
Above, we learned some new functions for visualizing the relationship between
columns. The GGally package contains some useful functions for looking at
multiple univariate and bivariate relationships at the same time, such as the
ggpairs() function. ggpairs() takes the data as its first argument. By default,
it will plot the pairwise distributions for all columns, but we can also specify to
only select a subset of columns using the columns argument. You can see below
that it plots bar plots and density plots for each univariate sample distribution.
It then plots the bivariate distributions and calculates the Pearson correlation
for all pairs of continuous columns. That’s a lot of information!

72 4 Intro to Exploratory Data Analysis

Figure 4.2: Box Plot Example.

ggpairs(nhanes_df, columns = c("SEX", "AGE", "LEAD", "SBP1", "DBP1"))

4.3 Autogenerated Plots 73

Corr:

0.287***

Corr:

0.444***

Corr:

0.159***

Corr:

0.013

Corr:

0.015

Corr:
0.417***

SEX AGE LEAD SBP1 DBP1

S
E

X
A

G
E

LE
A

D
S

B
P

1
D

B
P

1

05010015020005010015020020 40 60 80 0 5 10 15 20 80 120 160 200 0 40 80 120

0

500

1000

20
40
60
80

0
5

10
15
20

80
120
160
200

0

50

100

Another useful function in this package is the ggcorr() function: this function
takes in a data frame with only numeric columns and displays the correlation
between all pairs of columns, where the color of each grid cell indicates the
strength of the correlation. The additional argument label=TRUE prints the
actual correlation value on each grid cell. This is a useful way to identify pairs
of strongly correlated columns.

nhanes_cont <- nhanes_df[,c("AGE", "LEAD", "SBP1", "DBP1")]
ggcorr(nhanes_cont, label=TRUE)

74 4 Intro to Exploratory Data Analysis

0.3 0.4

0.2

0

0

0.4

AGE

LEAD

SBP1

DBP1

−1.0

−0.5

0.0

0.5

1.0

4.4 Tables
Another useful way to display information about your data is through tables.
For example, it is standard practice in articles to have the first table in the
paper give information about the study sample, such as the mean and stan-
dard deviation for all continuous columns and the proportions for categorical
columns. The gt package is designed to create polished tables that can include
footnotes, titles, column labels, etc. The gtsummary package is an extension
of this package that can create summary tables. We will focus on the latter
but come back to creating nice tables in Chapter 12.

To start, we create a gt object (a special type of table) of the first six rows of
our data using the gt() function. You can see the difference in the formatting
as opposed to printing the data.

gt(head(nhanes_df[, c("ID", "AGE", "SEX", "RACE")]))

ID AGE SEX RACE

4.4 Tables 75

93711 56 Male Other Race
93713 67 Male Non-Hispanic White
93716 61 Male Other Race
93717 22 Male Non-Hispanic White
93721 60 Female Mexican American
93722 60 Female Non-Hispanic White

We will now show you how to use the tbl_summary() function in the gtsum-
mary package. The first argument to this function is again the data frame.
By default, this function will summarize all the columns in the data. Instead,
we use the include argument to specify a list of columns to include. We then
pipe this result to as_gt() which creates a gt table from the summary output.
Again, we then need to pass this to gt:::as.tags.gt_tbl() to display this
table as HTML within a Jupyter notebook. Note that the table computes the
total number of observations and the proportions for categorical columns and
the median and interquartile range for continuous columns.

tbl_summary(nhanes_df, include= c("SEX", "RACE", "AGE", "EDUCATION",
"SMOKE", "BMI_CAT", "LEAD", "SBP1",
"DBP1", "HYP")) %>%

as_gt()

Characteristic N = 2,5841

SEX
 Male 1,310 (51%)
 Female 1,274 (49%)
RACE
 Mexican American 358 (14%)
 Other Hispanic 225 (8.7%)
 Non-Hispanic White 992 (38%)
 Non-Hispanic Black 568 (22%)
 Other Race 441 (17%)
AGE 48 (33, 62)
EDUCATION
 LessThanHS 373 (14%)
 HS 593 (23%)
 MoreThanHS 1,618 (63%)
SMOKE
 NeverSmoke 1,411 (55%)
 QuitSmoke 631 (24%)
 StillSmoke 542 (21%)
BMI_CAT

76 4 Intro to Exploratory Data Analysis

 BMI<=25 663 (26%)
 25<BMI<30 808 (31%)
 BMI>=30 1,113 (43%)
LEAD 0.93 (0.56, 1.44)
SBP1 122 (112, 134)
DBP1 72 (66, 80)
HYP 1,451 (56%)

1n (%); Median (IQR)

We can update our table by changing some of its arguments. This time, we
specify that we want to stratify our table by hypertension status so that the ta-
ble summarizes the data by this grouping. Additionally, we change how contin-
uous columns are summarized by specifying that we want to report the mean
and standard deviation instead of the median and interquartile range. We do
this using the statistic argument. The documentation for the tbl_summary()
function can help you format this argument depending on which statistics you
would like to display.

tbl_summary(nhanes_df, include= c("SEX", "RACE", "AGE", "EDUCATION",
"SMOKE", "BMI_CAT", "LEAD", "SBP1",
"DBP1", "HYP"),

by = "HYP",
statistic = list(all_continuous() ~ "{mean} ({sd})")) %>%

as_gt()

Characteristic 0, N = 1,1331 1, N = 1,4511

SEX
 Male 472 (42%) 838 (58%)
 Female 661 (58%) 613 (42%)
RACE
 Mexican American 186 (16%) 172 (12%)
 Other Hispanic 104 (9.2%) 121 (8.3%)
 Non-Hispanic White 429 (38%) 563 (39%)
 Non-Hispanic Black 203 (18%) 365 (25%)
 Other Race 211 (19%) 230 (16%)
AGE 40 (15) 55 (16)
EDUCATION
 LessThanHS 151 (13%) 222 (15%)
 HS 250 (22%) 343 (24%)
 MoreThanHS 732 (65%) 886 (61%)
SMOKE
 NeverSmoke 678 (60%) 733 (51%)

4.5 Exercises 77

 QuitSmoke 220 (19%) 411 (28%)
 StillSmoke 235 (21%) 307 (21%)
BMI_CAT
 BMI<=25 392 (35%) 271 (19%)
 25<BMI<30 351 (31%) 457 (31%)
 BMI>=30 390 (34%) 723 (50%)
LEAD 1.03 (1.15) 1.37 (1.25)
SBP1 112 (10) 134 (18)
DBP1 67 (9) 77 (14)

1n (%); Mean (SD)

Outside of the gt and gtsummary packages, another common package used
to create summary tables is the tableone package (Yoshida and Bartel 2022),
which is not covered in this book.

4.5 Exercises
For these exercises, we will continue using the nhanes_df data.

1. Using both numerical and graphical summaries, describe the dis-
tribution of the first diastolic blood pressure reading DBP1among
study participants. Then, create a column called INCOME_CAT with
two categories: “low” for those whose income is at most 2 and “not
low” otherwise and examine the bivariate distribution of DBP1 and
INCOME_CAT. Arrange the two plots next to each other. What do you
notice?

2. Subset the data to adults between the ages of 20 and 55. Then,
explore how blood pressure varies by age and gender among this
age group. Is there a visible trend in blood pressure with increasing
age among either sex?

3. For males between the ages of 50-59, compare blood pressure across
race as reported in the race column. Then, create a summary table
stratified by the race column and report the mean, standard devia-
tion, minimum and maximum values for all continuous columns.

4. Recreate the the plots in Figure 4.3 and Figure 4.4. Based on what
you see, how do you expect blood lead levels to change by year?
Check your answer to the previous question by plotting these two
columns against each other.

78 4 Intro to Exploratory Data Analysis

Figure 4.3: Education Levels Over Time.

Figure 4.4: Blood Lead Level by Education Level.

5
Data Transformations and Summaries

In this chapter, we will introduce the dyplr package (Wickham et al. 2023),
which is part of the tidyverse group of packages, to expand our tools in
exploring and transforming our data. We will learn how to do some basic ma-
nipulations of data (e.g. adding or removing columns, filtering data, arranging
by one or multiple columns) as well as how to summarize data (e.g. grouping
by values, calculating summary statistics). We will also practice combining
these operations using the pipe operator %>%. We will use the same sample of
the National Health and Nutrition Examination Survey (Centers for Disease
Control and Prevention (CDC) 1999-2018) as in Chapter 4.

library(HDSinRdata)
library(tidyverse)
data(NHANESsample)

5.1 Tibbles and Data Frames
Take a look at the class of NHANESsample. As we might expect, the data is
stored as a data frame.

class(NHANESsample)
#> [1] "data.frame"

However, tidyverse packages also work with another data structure called a
tibble. A tibble has all the properties of data frames that we have learned so
far, but they are a more modern version of a data frame. To convert our data
to this data structure we use the as_tibble() function. In practice, there are
only very slight difference between the two data structures, and you generally
do not need to convert data frames to tibbles. Below we convert our data from
a data frame to a tibble and print the head of the data before converting it
back to a data frame and repeating. You can see the two structures have a
slightly different print statement but are otherwise very similar.

79

80 5 Data Transformations and Summaries

nhanes_df <- as_tibble(NHANESsample)
print(head(nhanes_df))
#> # A tibble: 6 x 21
#> ID AGE SEX RACE EDUCATION INCOME SMOKE YEAR LEAD

BMI_CAT↪

#> <dbl> <dbl> <fct> <fct> <fct> <dbl> <fct> <dbl> <dbl>
<fct>↪

#> 1 2 77 Male Non-Hisp~ MoreThan~ 5 Neve~ 1999 5
BMI<=25↪

#> 2 5 49 Male Non-Hisp~ MoreThan~ 5 Quit~ 1999 1.6
25<BMI~↪

#> 3 12 37 Male Non-Hisp~ MoreThan~ 4.93 Neve~ 1999 2.4
BMI>=30↪

#> 4 13 70 Male Mexican ~ LessThan~ 1.07 Quit~ 1999 1.6
25<BMI~↪

#> 5 14 81 Male Non-Hisp~ LessThan~ 2.67 Stil~ 1999 5.5
25<BMI~↪

#> # i 1 more row
#> # i 11 more variables: LEAD_QUANTILE <fct>, HYP <dbl>, ALC <chr>,
#> # DBP1 <dbl>, DBP2 <dbl>, DBP3 <dbl>, DBP4 <dbl>, SBP1 <dbl>,
#> # SBP2 <dbl>, SBP3 <dbl>, SBP4 <dbl>

nhanes_df <- as.data.frame(nhanes_df)
print(head(nhanes_df))
#> ID AGE SEX RACE EDUCATION INCOME SMOKE YEAR
#> 1 2 77 Male Non-Hispanic White MoreThanHS 5.00 NeverSmoke 1999
#> 2 5 49 Male Non-Hispanic White MoreThanHS 5.00 QuitSmoke 1999
#> 3 12 37 Male Non-Hispanic White MoreThanHS 4.93 NeverSmoke 1999
#> 4 13 70 Male Mexican American LessThanHS 1.07 QuitSmoke 1999
#> 5 14 81 Male Non-Hispanic White LessThanHS 2.67 StillSmoke 1999
#> 6 15 38 Female Non-Hispanic White MoreThanHS 4.52 StillSmoke 1999
#> LEAD BMI_CAT LEAD_QUANTILE HYP ALC DBP1 DBP2 DBP3 DBP4 SBP1 SBP2
#> 1 5.0 BMI<=25 Q4 0 Yes 58 56 56 NA 106 98
#> 2 1.6 25<BMI<30 Q3 1 Yes 82 84 82 NA 122 122
#> 3 2.4 BMI>=30 Q4 1 Yes 108 98 100 NA 182 172
#> 4 1.6 25<BMI<30 Q3 1 Yes 78 62 70 NA 140 130
#> 5 5.5 25<BMI<30 Q4 1 Yes 56 NA 58 64 142 NA
#> 6 1.5 25<BMI<30 Q3 0 Yes 68 68 70 NA 106 112
#> SBP3 SBP4
#> 1 98 NA
#> 2 122 NA
#> 3 176 NA

5.2 Subsetting Data 81

#> 4 130 NA
#> 5 134 138
#> 6 106 NA

We mention tibbles here since some functions in the tidyverse convert data
frames to tibbles in their output. In particular, when we summarize over
groups below we can expect a tibble to be returned. It is useful to be aware
that our data may change data structure with such functions and to know
that we can always convert back if needed.

5.2 Subsetting Data
In earlier chapters, we have seen how to select and filter data using row and
column indices as well as using the subset() function. The dplyr package has
its own functions that are useful to subset the data. The select() function
allows us to select a subset of columns: this function takes in the data frame (or
tibble) and the names or indices of the columns we want to select. For example,
if we only wanted to select the variables for race and blood lead level, we could
specify these two columns. To display the result of this selection, we use the
pipe operator %>%. Recall that this takes the result on the left hand side and
passes it as the first argument to the function on the right hand side. The
output below shows that there are only two columns in the filtered data.

select(nhanes_df, c(RACE, LEAD)) %>% head()
#> RACE LEAD
#> 1 Non-Hispanic White 5.0
#> 2 Non-Hispanic White 1.6
#> 3 Non-Hispanic White 2.4
#> 4 Mexican American 1.6
#> 5 Non-Hispanic White 5.5
#> 6 Non-Hispanic White 1.5

The select() function can also be used to remove columns by adding a nega-
tive sign in front of the vector of column names in its arguments. For example,
below we keep all columns except ID and LEAD_QUANTILE. Note that in this case
we have saved the selected data back to our data frame nhanes_df. Addition-
ally, this time we used a pipe operator to pipe the data to the select function
itself.

82 5 Data Transformations and Summaries

nhanes_df <- nhanes_df %>% select(-c(ID, LEAD_QUANTILE))
names(nhanes_df)
#> [1] "AGE" "SEX" "RACE" "EDUCATION" "INCOME"
#> [6] "SMOKE" "YEAR" "LEAD" "BMI_CAT" "HYP"
#> [11] "ALC" "DBP1" "DBP2" "DBP3" "DBP4"
#> [16] "SBP1" "SBP2" "SBP3" "SBP4"

While select() allows us to choose a subset of columns, the filter() function
allows us to choose a subset of rows. The filter() function takes a data frame
as the first argument and a vector of booleans as the second argument. This
vector of booleans can be generated using conditional statements as we used
in Chapter 4. Below, we choose to filter the data to only observations after
2008.

nhanes_df_recent <- nhanes_df %>% filter(YEAR >= 2008)

We can combine conditions by using multiple filter() calls, by creating a
more complicated conditional statement using the & (and), | (or), and %in% (in)
operators, or by separating the conditions with commas within filter. Below,
we demonstrate these three ways to filter the data to males between 2008 and
2012. Note that the between() function allows us to capture the logic YEAR >=
2008 & YEAR <= 2012.

Example 1: multiple filter calls
nhanes_df_males1 <- nhanes_df %>%
filter(YEAR <= 2012) %>%
filter(YEAR >= 2008) %>%
filter(SEX == "Male")

Example 2: combine with & operator
nhanes_df_males2 <- nhanes_df %>%
filter((YEAR <= 2012) & (YEAR >= 2008) & (SEX == "Male"))

Example 3: combine into one filter call with commas
nhanes_df_males3 <- nhanes_df %>%
filter(between(YEAR, 2008, 2012), SEX == "Male")

The use of parentheses in the code above is especially important in order to
capture our desired logic. In all these examples, we broke our code up into
multiple lines, which makes it easier to read. A good rule of thumb is to not go
past 80 characters in a line, and R Studio conveniently has a vertical gray line
at this limit. To create a new line, you can hit enter either after an operator

5.2 Subsetting Data 83

(e.g. %>%, +, |) or within a set of unfinished brackets or parentheses. Either of
these breaks lets R know that your code is not finished yet.

Lastly, we can subset the data using the slice() function to select a slice of
rows by their index. The function takes in the data set and a vector of indices.
Below, we find the first and last rows of the data.

slice(nhanes_df, c(1, nrow(nhanes_df)))
#> AGE SEX RACE EDUCATION INCOME SMOKE YEAR LEAD
#> 1 77 Male Non-Hispanic White MoreThanHS 5.00 NeverSmoke 1999 5.0
#> 2 38 Male Non-Hispanic White MoreThanHS 1.56 StillSmoke 2017 0.9
#> BMI_CAT HYP ALC DBP1 DBP2 DBP3 DBP4 SBP1 SBP2 SBP3 SBP4
#> 1 BMI<=25 0 Yes 58 56 56 NA 106 98 98 NA
#> 2 BMI>=30 1 Yes 98 92 98 NA 150 146 148 NA

A few other useful slice functions are slice_sample(), slice_max(), and
slice_min(). The first takes in an argument n which specifies the number
of random rows to sample from the data. For example, we could randomly
sample 100 rows from our data. The latter two allow us to specify a column
through the argument order_by and return the n rows with either the highest
or lowest values in that column. Below we find the three male observations
from 2007 with the highest and lowest blood lead levels and select a subset of
columns to display.

three male observations with highest blood lead level in 2007
nhanes_df %>%
filter(YEAR == 2007, SEX == "Male") %>%
select(c(RACE, EDUCATION, SMOKE, LEAD, SBP1, DBP1)) %>%
slice_max(order_by = LEAD, n=3)

#> RACE EDUCATION SMOKE LEAD SBP1 DBP1
#> 1 Non-Hispanic Black LessThanHS NeverSmoke 33.1 106 66
#> 2 Other Hispanic LessThanHS StillSmoke 26.8 106 72
#> 3 Other Hispanic LessThanHS StillSmoke 25.7 112 60

three male observations with lowest blood lead level in 2007
nhanes_df %>%
filter(YEAR == 2007, SEX == "Male") %>%
select(c(RACE, EDUCATION, SMOKE, LEAD, SBP1, DBP1)) %>%
slice_min(order_by = LEAD, n=3)

#> RACE EDUCATION SMOKE LEAD SBP1 DBP1
#> 1 Non-Hispanic White LessThanHS NeverSmoke 0.177 114 80
#> 2 Other Hispanic LessThanHS QuitSmoke 0.280 122 62
#> 3 Mexican American MoreThanHS QuitSmoke 0.320 112 66

84 5 Data Transformations and Summaries

5.2.1 Practice Question
Filter the data to only those with an education level of more than HS who
report alcohol use. Then, select only the diastolic blood pressure variables
and display the 4th and 10th rows. Your result should match the result in
Figure 5.1.

Figure 5.1: Filtering and Selecting Data.

Insert your solution here:

5.3 Updating Rows and Columns
The next few functions we will look at will allow us to update the rows and
columns in our data. For example, the rename() function allows us to change
the names of columns. Below, we change the name of INCOME to PIR since this
variable is the poverty income ratio and also update the name of SMOKE to be
SMOKE_STATUS. When specifying these names, the new name is on the left of
the = and the old name is on the right.

nhanes_df <- nhanes_df %>% rename(PIR = INCOME, SMOKE_STATUS = SMOKE)
names(nhanes_df)
#> [1] "AGE" "SEX" "RACE" "EDUCATION"
#> [5] "PIR" "SMOKE_STATUS" "YEAR" "LEAD"
#> [9] "BMI_CAT" "HYP" "ALC" "DBP1"
#> [13] "DBP2" "DBP3" "DBP4" "SBP1"
#> [17] "SBP2" "SBP3" "SBP4"

In the last chapter, we created a new variable called EVER_SMOKE based on the
smoking status variable using the ifelse() function. Recall that this function

5.3 Updating Rows and Columns 85

allows us to specify a condition and then two alternative values based on
whether we meet or do not meet this condition. We see that there are about
15,000 subjects in our data who never smoked.

ifelse(nhanes_df$SMOKE_STATUS == "NeverSmoke", "No", "Yes") %>%
table()

#> .
#> No Yes
#> 15087 16178

Another useful function from the tidyverse is the case_when() function, which
is an extension of the ifelse() function but allows to specify more than two
cases. We demonstrate this function below to show how we could relabel the
levels of the SMOKE_STATUS column. For each condition, we use the right side
of the ~ to specify the value associated with a TRUE for that condition.

case_when(nhanes_df$SMOKE_STATUS == "NeverSmoke" ~ "Never Smoked",
nhanes_df$SMOKE_STATUS == "QuitSmoke" ~ "Quit Smoking",
nhanes_df$SMOKE_STATUS ==

"StillSmoke" ~ "Current Smoker") %>%
table()

#> .
#> Current Smoker Never Smoked Quit Smoking
#> 7317 15087 8861

Above, we did not store the columns we created. To do so, we could use the $
operator or the cbind() function. The tidyverse also includes an alternative
function to add columns called mutate(). This function takes in a data frame
and a set of columns with associated names to add to the data or update. In
the example below, we create the column EVER_SMOKE and update the column
SMOKE_STATUS. Within the mutate() function, we do not have to use the $
operator to reference the column SMOKE_STATUS. Instead, we can specify just
the column name and it will interpret it as that column.

nhanes_df <- nhanes_df %>%
mutate(EVER_SMOKE = ifelse(SMOKE_STATUS == "NeverSmoke",

"No", "Yes"),
SMOKE_STATUS =
case_when(SMOKE_STATUS == "NeverSmoke" ~ "Never Smoked",

SMOKE_STATUS == "QuitSmoke" ~ "Quit Smoking",
SMOKE_STATUS == "StillSmoke" ~ "Current Smoker"))

The last function we will demonstrate in this section is the arrange() function,

86 5 Data Transformations and Summaries

which takes in a data frame and a vector of columns used to sort the data (data
is sorted by the first column with ties being sorted by the second column, etc.).
By default, the arrange() function sorts the data in increasing order, but we
can use the desc() function to instead sort in descending order. For example,
the code below filters the data to male smokers before sorting by decreasing
systolic and diastolic blood pressure in descending order.

nhanes_df %>%
select(c(YEAR, SEX, SMOKE_STATUS, SBP1, DBP1, LEAD)) %>%
filter(SEX == "Male", SMOKE_STATUS == "Current Smoker") %>%
arrange(desc(SBP1), desc(DBP1)) %>%
head(10)

#> YEAR SEX SMOKE_STATUS SBP1 DBP1 LEAD
#> 1 2011 Male Current Smoker 230 120 5.84
#> 2 2015 Male Current Smoker 230 98 1.56
#> 3 2009 Male Current Smoker 220 80 4.84
#> 4 2001 Male Current Smoker 218 118 3.70
#> 5 2017 Male Current Smoker 212 122 2.20
#> 6 2003 Male Current Smoker 212 54 4.00
#> 7 2011 Male Current Smoker 210 92 5.37
#> 8 2007 Male Current Smoker 210 80 2.18
#> 9 2015 Male Current Smoker 206 108 1.44
#> 10 2003 Male Current Smoker 206 68 1.80

5.3.1 Practice Question
Create a new column called DBP_CHANGE that is equal to the difference between
a patient’s first and fourth diastolic blood pressure readings. Then, sort the
data frame by this new column in increasing order and print the first four
rows. The first four DBP_CHANGE values in the head of the resulting data frame
should be -66, -64, -64, and -62.

Insert your solution here:

5.4 Summarizing and Grouping
If we wanted to understand how many observations there are for each given
race category, we could use the table() function as we described in earlier
chapters. Another similar function is the count() function. This function takes
in a data frame and one or more columns and counts the number of rows

5.4 Summarizing and Grouping 87

for each combination of unique values in these columns. If no columns are
specified, it counts the total number of rows in the data frame. Below, we find
the total number of rows (31,265) and the number of observations by race and
year. We can see that the number in each group fluctuates quite a bit!

count(nhanes_df)
#> n
#> 1 31265
count(nhanes_df, RACE, YEAR)
#> RACE YEAR n
#> 1 Mexican American 1999 713
#> 2 Mexican American 2001 674
#> 3 Mexican American 2003 627
#> 4 Mexican American 2005 634
#> 5 Mexican American 2007 639
#> 6 Mexican American 2009 672
#> 7 Mexican American 2011 322
#> 8 Mexican American 2013 234
#> 9 Mexican American 2015 287
#> 10 Mexican American 2017 475
#> 11 Other Hispanic 1999 181
#> 12 Other Hispanic 2001 129
#> 13 Other Hispanic 2003 80
#> 14 Other Hispanic 2005 96
#> 15 Other Hispanic 2007 395
#> 16 Other Hispanic 2009 367
#> 17 Other Hispanic 2011 337
#> 18 Other Hispanic 2013 167
#> 19 Other Hispanic 2015 214
#> 20 Other Hispanic 2017 313
#> 21 Non-Hispanic White 1999 1401
#> 22 Non-Hispanic White 2001 1882
#> 23 Non-Hispanic White 2003 1785
#> 24 Non-Hispanic White 2005 1818
#> 25 Non-Hispanic White 2007 1940
#> 26 Non-Hispanic White 2009 2169
#> 27 Non-Hispanic White 2011 1463
#> 28 Non-Hispanic White 2013 917
#> 29 Non-Hispanic White 2015 685
#> 30 Non-Hispanic White 2017 1413
#> 31 Non-Hispanic Black 1999 463
#> 32 Non-Hispanic Black 2001 542
#> 33 Non-Hispanic Black 2003 576
#> 34 Non-Hispanic Black 2005 679

88 5 Data Transformations and Summaries

#> 35 Non-Hispanic Black 2007 728
#> 36 Non-Hispanic Black 2009 661
#> 37 Non-Hispanic Black 2011 876
#> 38 Non-Hispanic Black 2013 357
#> 39 Non-Hispanic Black 2015 351
#> 40 Non-Hispanic Black 2017 808
#> 41 Other Race 1999 76
#> 42 Other Race 2001 88
#> 43 Other Race 2003 109
#> 44 Other Race 2005 122
#> 45 Other Race 2007 123
#> 46 Other Race 2009 175
#> 47 Other Race 2011 475
#> 48 Other Race 2013 223
#> 49 Other Race 2015 209
#> 50 Other Race 2017 595

Finding the counts like we did above is a form of a summary statistic for
our data. The summarize() function in the tidyverse is used to compute
summary statistics of the data and allows us to compute multiple statistics:
this function takes in a data frame and one or more summary functions based
on the given column names. In the example below, we find the total number of
observations as well as the mean and median systolic blood pressure for Non-
Hispanic Blacks. Note that the n() function is the function within summarize()
that finds the number of observations. In the mean() and median() functions
we set na.rm=TRUE to remove NAs before computing these values (otherwise
we could get NA as our output).

nhanes_df %>%
filter(RACE == "Non-Hispanic Black") %>%
summarize(TOT = n(), MEAN_SBP = mean(SBP1, na.rm=TRUE),

MEAN_DBP = mean(DBP1, na.rm=TRUE))
#> TOT MEAN_SBP MEAN_DBP
#> 1 6041 129 72.6

If we wanted to repeat this for the other race groups, we would have to change
the arguments to the filter() function each time. To avoid having to repeat
our code and/or do this multiple times, we can use the group_by() function,
which takes a data frame and one or more columns with which to group the
data by. Below, we group using the RACE variable. When we look at printed
output it looks almost the same as it did before except we can see that its class
is now a grouped data frame, which is printed at the top. In fact, a grouped
data frame (or grouped tibble) acts like a set of data frames: one for each

5.4 Summarizing and Grouping 89

group. If we use the slice() function with index 1, it will return the first row
for each group.

nhanes_df %>%
group_by(RACE) %>%
slice(1)

#> # A tibble: 5 x 20
#> # Groups: RACE [5]
#> AGE SEX RACE EDUCATION PIR SMOKE_STATUS YEAR LEAD

BMI_CAT↪

#> <dbl> <fct> <fct> <fct> <dbl> <chr> <dbl> <dbl>
<fct>↪

#> 1 70 Male Mexican~ LessThan~ 1.07 Quit Smoking 1999 1.6
25<BMI~↪

#> 2 61 Female Other H~ MoreThan~ 3.33 Current Smo~ 1999 2.2
BMI<=25↪

#> 3 77 Male Non-His~ MoreThan~ 5 Never Smoked 1999 5
BMI<=25↪

#> 4 38 Female Non-His~ HS 0.92 Current Smo~ 1999 1.8
25<BMI~↪

#> 5 63 Female Other R~ MoreThan~ 5 Never Smoked 1999 1.2
BMI<=25↪

#> # i 11 more variables: HYP <dbl>, ALC <chr>, DBP1 <dbl>, DBP2 <dbl>,
#> # DBP3 <dbl>, DBP4 <dbl>, SBP1 <dbl>, SBP2 <dbl>, SBP3 <dbl>,
#> # SBP4 <dbl>, EVER_SMOKE <chr>

Grouping data is very helpful in combination with the summarize() function.
Like with the slice() function, summarize() will calculate the summary values
for each group. We can now find the total number of observations as well as
the mean systolic and diastolic blood pressure values for each racial group.
Note that the returned summarized data is in a tibble.

nhanes_df %>%
group_by(RACE) %>%
summarize(TOT = n(), MEAN_SBP = mean(SBP1, na.rm=TRUE),

MEAN_DBP = mean(DBP1, na.rm=TRUE))
#> # A tibble: 5 x 4
#> RACE TOT MEAN_SBP MEAN_DBP
#> <fct> <int> <dbl> <dbl>
#> 1 Mexican American 5277 124. 70.4
#> 2 Other Hispanic 2279 123. 70.1
#> 3 Non-Hispanic White 15473 125. 70.4

90 5 Data Transformations and Summaries

#> 4 Non-Hispanic Black 6041 129. 72.6
#> 5 Other Race 2195 122. 72.6

After summarizing, the data is no longer grouped by race. If we ever want to
remove the group structure from our data, we can use the ungroup() function,
which restores the data to a single data frame. After ungrouping by race below,
we can see that we get a single observation returned by the slice() function.

nhanes_df %>%
select(SEX, RACE, SBP1, DBP1) %>%
group_by(RACE) %>%
ungroup() %>%
arrange(desc(SBP1)) %>%
slice(1)

#> # A tibble: 1 x 4
#> SEX RACE SBP1 DBP1
#> <fct> <fct> <dbl> <dbl>
#> 1 Female Non-Hispanic White 270 124

5.4.1 Practice Question
Create a data frame summarizing the percent of patients with hypertension
by smoking status. The result should look like Figure 5.2.

Figure 5.2: Grouping and Summarizing Data.

Insert your solution here:

5.5 Exercises 91

5.5 Exercises
The following exercises use the covidcases dataset from the HDSinRdata
package. Before completing the exercises, be sure to read the documentation
for this data (?covidcases).

data(covidcases)

1. Suppose we are interested in the distribution of weekly cases by
state. First, create a new column in covidcases called region spec-
ifying whether each state is in the Northeast, Midwest, South, or
West (you can either do this by hand using this list1 of which states
are in which region or you can use state.region from the datasets
package in R). Then, create a data frame summarizing the average
and standard deviation of the weekly cases for the Northeast.

2. Now, create a data frame with the average and standard deviation
summarized for each region rather than for just one selected region
as in Question 1. Sort this data frame from highest to lowest average
weekly cases. What other information would you need in order to
more accurately compare these regions in terms of their average
cases?

3. Find the ten counties in the Midwest with the lowest weekly deaths
in week 15 of this data ignoring ties (use slice_min() to find the
argument needed for this). What do you notice about the minimum
values? See the data documentation for why we observe these values.

4. Filter the data to between weeks 9 and 20 (around the start of the
pandemic), get the total cases per county during that time frame,
and then find the county in each state that had the highest number
of total cases.

1https://en.wikipedia.org/wiki/List_of_regions_of_the_United_States

https://en.wikipedia.org/wiki/List_of_regions_of_the_United_States

6
Merging and Reshaping Data

In this chapter, we continue to look at some of the ways to manipulate data
using the tidyverse packages. In particular, we will look at reshaping and
merging data frames in order to get the data in the format we want. When
reshaping data, we can convert between wide form (more columns, fewer rows)
and long form (fewer columns, more rows). We can also use data pivots to put
our data into what is called tidy form. Additionally, we will look at combin-
ing information from multiple data frames into a single data frame. The key
ideas when merging data are to think about what the common information is
between the data frames and to consider which values we want to keep.

For this chapter, we will use three data sets. The first data set is covidcases,
which contains the weekly case and death counts by county in the United
States for 2020 (Guidotti and Ardia 2020; Guidotti 2022); the second data set
is mobility, which contains daily mobility estimates by state in 2020 (Warren
and Skillman 2020); and the third data set is lockdowndates, which contains
the start and end dates for statewide stay at home orders (Raifman et al.
2022). Take a look at the first few rows of each data frame below and read
the documentation for the column descriptions.

library(tidyverse)
library(HDSinRdata)
data(covidcases)
data(lockdowndates)
data(mobility)

head(covidcases)
#> # A tibble: 6 x 5
#> # Groups: state, county, week [6]
#> state county week weekly_cases weekly_deaths
#> <chr> <chr> <dbl> <int> <int>
#> 1 Alabama Autauga 12 3 0
#> 2 Alabama Autauga 13 3 0
#> 3 Alabama Autauga 14 2 1
#> 4 Alabama Autauga 15 11 1

93

94 6 Merging and Reshaping Data

#> 5 Alabama Autauga 16 5 1
#> # i 1 more row

head(mobility)
#> # A tibble: 6 x 5
#> # Groups: state [1]
#> state date samples m50 m50_index
#> <chr> <chr> <int> <dbl> <dbl>
#> 1 Alabama 2020-03-01 267652 10.9 76.9
#> 2 Alabama 2020-03-02 287264 14.3 98.6
#> 3 Alabama 2020-03-03 292018 14.2 98.2
#> 4 Alabama 2020-03-04 298704 13.1 89.7
#> 5 Alabama 2020-03-05 288218 14.8 102.
#> # i 1 more row

head(lockdowndates)
#> # A tibble: 6 x 3
#> State Lockdown_Start Lockdown_End
#> <chr> <chr> <chr>
#> 1 Alabama 2020-04-04 2020-04-30
#> 2 Alaska 2020-03-28 2020-04-24
#> 3 Arizona 2020-03-31 2020-05-15
#> 4 Arkansas None None
#> 5 California 2020-03-19 2020-08-28
#> # i 1 more row

Both the mobility and lockdown data frames contain date columns. Right now,
these columns in both data sets are of the class character, which we can see
in the printed output above. We can use the as.Date() function to tell R to
treat these columns as dates instead of characters. When using this function,
we need to specify the date format as an argument so that R knows how to
parse this text to a date. Our format is given as %Y-%M-%D, where the %Y stands
for the full four-digit year, %M is a two-digit month (e.g. January is coded “01”
vs “1”), and %D stands for the two-digit day (e.g. the third day is coded “03”
vs “3”). Below, we convert the classes of these columns to ‘Date’.

mobility$date <- as.Date(mobility$date, formula="%Y-%M-%D")
lockdowndates$Lockdown_Start <- as.Date(lockdowndates$Lockdown_Start,

formula="%Y-%M-%D")
lockdowndates$Lockdown_End <- as.Date(lockdowndates$Lockdown_End,

95

formula="%Y-%M-%D")
class(mobility$date)
#> [1] "Date"
class(lockdowndates$Lockdown_Start)
#> [1] "Date"
class(lockdowndates$Lockdown_End)
#> [1] "Date"

After coding these columns as dates, we can access information such as the
day, month, year, or week from them. These functions are all available in
the lubridate package (Spinu, Grolemund, and Wickham 2023), which is a
package in the tidyverse that allows us to manipulate dates.

month(mobility$date[1])
#> [1] 3
week(mobility$date[1])
#> [1] 9

Next, we add a date column to covidcases. In this case, we need to use the
week number to find the date. Luckily, we can add days, months, weeks, or
years to dates using the lubridate package. January 1, 2020 was a Wednesday
and is counted as the first week, so to find the corresponding Sunday for each
week, we add the recorded week number minus one to December 29, 2019 (the
last Sunday before 2020). We show a simple example of adding one week to
this date below before doing this conversion for the entire column.

as.Date("2019-12-29")+weeks(1)
#> [1] "2020-01-05"

covidcases$date <- as.Date("2019-12-29")+weeks(covidcases$week-1)
head(covidcases)
#> # A tibble: 6 x 6
#> # Groups: state, county, week [6]
#> state county week weekly_cases weekly_deaths date
#> <chr> <chr> <dbl> <int> <int> <date>
#> 1 Alabama Autauga 12 3 0 2020-03-15
#> 2 Alabama Autauga 13 3 0 2020-03-22
#> 3 Alabama Autauga 14 2 1 2020-03-29
#> 4 Alabama Autauga 15 11 1 2020-04-05
#> 5 Alabama Autauga 16 5 1 2020-04-12
#> # i 1 more row

96 6 Merging and Reshaping Data

6.1 Tidy Data
The tidyverse is designed around interacting with tidy data with the
premise that using data in a tidy format can streamline our analysis. Data is
considered tidy if

• Each variable is associated with a single column.

• Each observation is associated with a single row.

• Each value has its own cell.

Take a look at the sample data below which stores information about the
maternal mortality rate for five countries over time (Roser and Ritchie 2013).
This data is not tidy because the variable for maternity mortality rate is
associated with multiple columns. Every row should correspond to one class
observation.

mat_mort1 <- data.frame(country = c("Turkey", "United States",
"Sweden", "Japan"),

y2002 = c(64, 9.9, 4.17, 7.8),
y2007 = c(21.9, 12.7, 1.86, 3.6),
y2012 = c(15.2, 16, 5.4, 4.8))

head(mat_mort1)
#> country y2002 y2007 y2012
#> 1 Turkey 64.00 21.90 15.2
#> 2 United States 9.90 12.70 16.0
#> 3 Sweden 4.17 1.86 5.4
#> 4 Japan 7.80 3.60 4.8

However, we can make this data tidy by creating separate columns for coun-
try, year, and maternity mortality rate as we demonstrate below. Now every
observation is associated with an individual row.

mat_mort2 <- data.frame(
country = rep(c("Turkey", "United States", "Sweden", "Japan"), 3),
year = c(rep(2002, 4), rep(2007, 4), rep(2012, 4)),
mat_mort_rate = c(64.0, 9.9, 4.17, 7.8, 21.9, 12.7, 1.86, 3.6,

15.2, 16, 5.4, 4.8))

6.2 Reshaping Data 97

head(mat_mort2)
#> country year mat_mort_rate
#> 1 Turkey 2002 64.00
#> 2 United States 2002 9.90
#> 3 Sweden 2002 4.17
#> 4 Japan 2002 7.80
#> 5 Turkey 2007 21.90
#> 6 United States 2007 12.70

6.2 Reshaping Data
The mobility and covid case data are both already in tidy form - each obser-
vation corresponds to a single row and every column is a single variable. We
might consider whether the lockdown dates should be reformatted to be tidy.
Another way to represent this data would be to have each observation be the
start or end of a stay at home order.

To reshape our data, we use the pivot_longer() function to change the data
from what is called wide form to what is called long form. This kind of
pivot involves taking a subset of columns that we will gather into a single
column while increasing the number of rows in the data set. Before pivoting,
we have to think about which columns we are transforming. The image in
Figure 6.1 shows a picture of some data on whether students have completed
a physical, hearing, or eye exam. The data is presented in wide form on the
left and long form on the right. To transform wide data to long data, we have
identified a subset of columns cols that we want to transform (these cols are
phys, hear, and eye in the left table). The long form contains a new column
names_to that contains the exam type and values_to that contains a binary
variable indicating whether or not each exam was completed.

In our case, we want to take the lockdown start and end columns and create
two new columns: one column will indicate whether or not a date represents
the start or end of a lockdown, and the other will contain the date itself. These
are called the key and value columns, respectively. The key column will get
its values from the names of the columns we are transforming (or the keys)
whereas the value column will get its values from the entries in those columns
(or the values).

The pivot_longer() function takes in a data table, the columns cols that we
are pivoting to longer form, the column name names_to that will store the
data from the previous column names, and the column name values_to for
the column that will store the information from the columns gathered. In

98 6 Merging and Reshaping Data

Figure 6.1: Pivoting Longer.

our case, we will name the first column Lockdown_Event since it will contain
whether each date is the start or end of a lockdown, and we will name the
second column Date. Take a look at the result below.

lockdown_long <- lockdowndates %>%
pivot_longer(cols=c("Lockdown_Start", "Lockdown_End"),

names_to="Lockdown_Event", values_to="Date") %>%
mutate(Date = as.Date(Date, formula ="%Y-%M-%D"),

Lockdown_Event = ifelse(Lockdown_Event=="Lockdown_Start",
"Start", "End")) %>%

na.omit()
head(lockdown_long)
#> # A tibble: 6 x 3
#> State Lockdown_Event Date
#> <chr> <chr> <date>
#> 1 Alabama Start 2020-04-04
#> 2 Alabama End 2020-04-30
#> 3 Alaska Start 2020-03-28
#> 4 Alaska End 2020-04-24
#> 5 Arizona Start 2020-03-31
#> # i 1 more row

In R, we can also transform our data in the opposite direction (from long
form to wide form instead of from wide form to long form) using the function
pivot_wider(). This function again first takes in a data table but now we
specify the arguments names_from and values_from. The former indicates the

6.2 Reshaping Data 99

column that R should get the new column names from, and the latter indicates
where the row values should be taken from. For example, in order to pivot our
lockdown data back to wide form below, we specify that names_from is the
lockdown event and values_from is the date itself. Now we are back to the
same form as before!

lockdown_wide <- pivot_wider(lockdown_long, names_from=Lockdown_Event,
↪

values_from=Date)
head(lockdown_wide)
#> # A tibble: 6 x 3
#> State Start End
#> <chr> <date> <date>
#> 1 Alabama 2020-04-04 2020-04-30
#> 2 Alaska 2020-03-28 2020-04-24
#> 3 Arizona 2020-03-31 2020-05-15
#> 4 California 2020-03-19 2020-08-28
#> 5 Colorado 2020-03-26 2020-04-26
#> # i 1 more row

Here’s another example: suppose that I want to create a data frame where
the columns correspond to the number of cases for each state in New England
and the rows correspond to the numbered months. First, I need to filter my
data to New England and then summarize my data to find the number of
cases per month. I use the month() function to be able to group by month and
state. Additionally, you can see that I add an ungroup() at the end. When
we summarize on data grouped by more than one variable, the summarized
output will still be grouped. In this case, the warning message states that the
data is still grouped by state.

ne_cases <- covidcases %>%
filter(state %in% c("Maine", "Vermont", "New Hampshire",

"Connecticut", "Rhode Island",
"Massachusetts")) %>%

mutate(month = month(date)) %>%
group_by(state, month) %>%
summarize(total_cases = sum(weekly_cases)) %>%
ungroup()

head(ne_cases)
#> # A tibble: 6 x 3
#> state month total_cases
#> <chr> <dbl> <int>
#> 1 Connecticut 3 6872

100 6 Merging and Reshaping Data

#> 2 Connecticut 4 18575
#> 3 Connecticut 5 11936
#> 4 Connecticut 6 2619
#> 5 Connecticut 7 2290
#> # i 1 more row

Now, I need to convert this data to wide format with a column for each state,
so my names_from argument will be state. Further, I want each row to have the
case values for each state, so my values_from argument will be total_cases.
The format of this data may not be tidy, but it allows me to quickly compare
cases across states.

pivot_wider(ne_cases, names_from=state, values_from=total_cases)
#> # A tibble: 7 x 7
#> month Connecticut Maine Massachusetts `New Hampshire` `Rhode

Island`↪

#> <dbl> <int> <int> <int> <int> <int>
#> 1 3 6872 434 13118 651 827
#> 2 4 18575 725 47499 1649 6843
#> 3 5 11936 1575 28798 2179 14653
#> 4 6 2619 1185 5545 751 1426
#> 5 7 2290 1046 7621 827 65562
#> # i 2 more rows
#> # i 1 more variable: Vermont <int>

6.2.1 Practice Question
Create a similar data frame as we did above but this time using the mobility
dataset. In other words, create a data frame where the columns correspond to
the average mobility for each state in New England and the rows correspond
to the numbered months. You should get a result that looks like in Figure 6.2.

Insert your solution here:

The pivots above were relatively simple in that there was only one set of values
we were pivoting on (e.g. the lockdown date, covid cases). The tidyr package1

provides examples of more complex pivots that you might want to apply to
your data (Wickham, Vaughan, and Girlich 2023). In the video below, we
demonstrate a pivot longer when there is information in the column names,

1https://tidyr.tidyverse.org/articles/pivot.html

https://tidyr.tidyverse.org/articles/pivot.html

6.3 Merging Data with Joins 101

Figure 6.2: Pivoting Mobility Data.

a pivot wider with multiple value columns, and a pivot longer with many
variables in the columns.

6.3 Merging Data with Joins
Above, we saw how to manipulate our current data into new formats. Now, we
will see how we can combine multiple data sources. Merging two data frames
is called joining, and the functions we will use to perform this joining depends
on how we want to match values between the data frames. For example, below
we join information about age and statin use from table1 and table2matching
by name.

table1 <- data.frame(age = c(14, 26, 32),
name = c("Alice", "Bob", "Alice"))

table2 <- data.frame(name = c("Carol", "Bob"),
statins = c(TRUE, FALSE))

full_join(table1, table2, by = "name")
#> age name statins
#> 1 14 Alice NA
#> 2 26 Bob FALSE
#> 3 32 Alice NA
#> 4 NA Carol TRUE

The list below shows an overview of the different possible joins, and the video

102 6 Merging and Reshaping Data

talks through each join type. For each join type, we specify two tables, table1
and table2, and the by argument, which specifies the columns used to match
rows between tables.

Types of Joins:

• left_join(table1, table2, by): Joins each row of table1 with all matches
in table2.

• right_join(table1, table2, by): Joins each row of table2 with all matches
in table1 (the opposite of a left join)

• inner_join(table1, table2, by): Looks for all matches between rows in
table1 and table2. Rows that do not find a match are dropped.

• full_join(table1, table2, by): Keeps all rows from both tables and joins
those that match. Rows that do not find a match will have NA values filled
in.

• semi_join(table1, table2, by): Keeps all rows in table1 that have a match
in table2 but does not join to any information from table2.

• anti_join(table1, table2, by): Keeps all rows in table1 that do not have
a match in table2 but does not join to any information from table2. The
opposite of a semi join.

We will first demonstrate a left join using the left_join() function. This
function takes in two data tables (table1 and table2) and the columns to
match rows by. In a left join, for every row of table1, we look for all matching
rows in table2 and add any columns not used to do the matching. Thus, every
row in table1 corresponds to at least one entry in the resulting table but
possibly more if there are multiple matches. Below, we use a left join to add
the lockdown information to our covidcases data. In this case, the first table
will be covidcases and we will match by state. Since the state column has
a slightly different name in the two data frames (“state” in covidcases and
“State” in lockdowndates), we specify that state is equivalent to State in the
by argument.

covidcases_full <- left_join(covidcases, lockdowndates,
by=c("state"="State"))

head(covidcases_full)
#> # A tibble: 6 x 8
#> # Groups: state, county, week [6]
#> state county week weekly_cases weekly_deaths date
#> <chr> <chr> <dbl> <int> <int> <date>
#> 1 Alabama Autauga 12 3 0 2020-03-15

6.3 Merging Data with Joins 103

#> 2 Alabama Autauga 13 3 0 2020-03-22
#> 3 Alabama Autauga 14 2 1 2020-03-29
#> 4 Alabama Autauga 15 11 1 2020-04-05
#> 5 Alabama Autauga 16 5 1 2020-04-12
#> # i 1 more row
#> # i 2 more variables: Lockdown_Start <date>, Lockdown_End <date>

These two new columns will allow us to determine whether the start of each
recorded week was during a lockdown. We use the between() function to create
a new column lockdown before dropping the two date columns. We can check
that this column worked as expected by choosing a single county to look at.

covidcases_full <- covidcases_full %>%
mutate(lockdown = between(date, Lockdown_Start, Lockdown_End)) %>%
select(-c(Lockdown_Start, Lockdown_End))

covidcases_full %>%
filter(state == "Alabama", county == "Jefferson",

date <= as.Date("2020-05-10"))
#> # A tibble: 10 x 7
#> # Groups: state, county, week [10]
#> state county week weekly_cases weekly_deaths date

lockdown↪

#> <chr> <chr> <dbl> <int> <int> <date> <lgl>
↪

#> 1 Alabama Jefferson 11 19 0 2020-03-08
FALSE↪

#> 2 Alabama Jefferson 12 66 0 2020-03-15
FALSE↪

#> 3 Alabama Jefferson 13 153 0 2020-03-22
FALSE↪

#> 4 Alabama Jefferson 14 156 8 2020-03-29
FALSE↪

#> 5 Alabama Jefferson 15 128 2 2020-04-05 TRUE
↪

#> # i 5 more rows

We now want to add in the mobility data. In the join above, we wanted to
keep any observation in covidcases regardless if it was in the lockdowndates
data frame. Therefore, we used a left join. In this case, we will only want to
keep observations that have mobility date for that state on each date. This
indicates that we want to use an inner join. The function inner_join() takes
in two data tables (table1 and table2) and the columns to match rows by. The
function only keeps rows in table1 that match to a row in table2. Again, those

104 6 Merging and Reshaping Data

columns in table2 not used to match with table1 are added to the resulting
outcome. In this case, we match by both state and date.

covidcases_full <- inner_join(covidcases_full, mobility,
by = c("state", "date")) %>%

select(-c(samples, m50_index))
head(covidcases_full)
#> # A tibble: 6 x 8
#> # Groups: state, county, week [6]
#> state county week weekly_cases weekly_deaths date

lockdown↪

#> <chr> <chr> <dbl> <int> <int> <date> <lgl>
#> 1 Alabama Autauga 12 3 0 2020-03-15 FALSE
#> 2 Alabama Autauga 13 3 0 2020-03-22 FALSE
#> 3 Alabama Autauga 14 2 1 2020-03-29 FALSE
#> 4 Alabama Autauga 15 11 1 2020-04-05 TRUE
#> 5 Alabama Autauga 16 5 1 2020-04-12 TRUE
#> # i 1 more row
#> # i 1 more variable: m50 <dbl>

6.3.1 Practice Question
Look at the two data frames, df_A and df_B, created in the below code. What
kind of join would produce the data frame in Figure 6.3? Perform this join
yourself.

Figure 6.3: Joining Data.

6.4 Exercises 105

df_A <- data.frame(patient_id = c(12, 9, 12, 8, 14, 8),
visit_num = c(1, 1, 2, 1, 1, 2),
temp = c(97.5, 96, 98, 99, 102, 98.6),
systolic_bp = c(120, 138, 113, 182, 132, 146))

df_A
#> patient_id visit_num temp systolic_bp
#> 1 12 1 97.5 120
#> 2 9 1 96.0 138
#> 3 12 2 98.0 113
#> 4 8 1 99.0 182
#> 5 14 1 102.0 132
#> 6 8 2 98.6 146
df_B <- data.frame(patient_id = c(12, 12, 12, 8, 8, 8, 14, 14),

visit_num = c(1, 2, 3, 1, 2, 3, 1, 2),
digit_span = c(3, 5, 7, 7, 9, 5, 8, 7))

df_B
#> patient_id visit_num digit_span
#> 1 12 1 3
#> 2 12 2 5
#> 3 12 3 7
#> 4 8 1 7
#> 5 8 2 9
#> 6 8 3 5
#> 7 14 1 8
#> 8 14 2 7

Insert your solution here:

6.4 Exercises
1. Take a look at the code below - what is wrong with it? Hint: think

about what causes the warning message.

visit_info <- data.frame(
name.f = c("Phillip", "Phillip", "Phillip", "Jessica",

"Jessica"),
name.l = c("Johnson", "Johnson", "Richards", "Smith",

"Abrams"),↪

106 6 Merging and Reshaping Data

measure = c("height", "age", "age", "age", "height"),
measurement = c(45, 186, 50, 37, 156)

)

contact_info <- data.frame(
first_name = c("Phillip", "Phillip", "Jessica", "Margaret"),
last_name = c("Richards", "Johnson", "Smith", "Reynolds"),
email = c("pr@aol.com", "phillipj@gmail.com",

"jesssmith@brown.edu", "marg@hotmail.com")
)

left_join(visit_info, contact_info,
by = c("name.f" = "first_name"))

#> Warning in left_join(visit_info, contact_info, by =
c(name.f = "first_name")): Detected an unexpected
many-to-many relationship between `x` and `y`.

↪

↪

#> i Row 1 of `x` matches multiple rows in `y`.
#> i Row 1 of `y` matches multiple rows in `x`.
#> i If a many-to-many relationship is expected, set

`relationship =↪

#> "many-to-many"` to silence this warning.
#> name.f name.l measure measurement last_name

email↪

#> 1 Phillip Johnson height 45 Richards
pr@aol.com↪

#> 2 Phillip Johnson height 45 Johnson
phillipj@gmail.com↪

#> 3 Phillip Johnson age 186 Richards
pr@aol.com↪

#> 4 Phillip Johnson age 186 Johnson
phillipj@gmail.com↪

#> 5 Phillip Richards age 50 Richards
pr@aol.com↪

#> 6 Phillip Richards age 50 Johnson
phillipj@gmail.com↪

#> 7 Jessica Smith age 37 Smith
jesssmith@brown.edu↪

#> 8 Jessica Abrams height 156 Smith
jesssmith@brown.edu↪

2. First, use the covidcases data to create a new data frame called
sub_cases containing the total number of cases by month for the
states of California, Michigan, Connecticut, Rhode Island, Ohio,

6.4 Exercises 107

New York, and Massachusetts. Then, manipulate the mobility data
to calculate the average m50 mobility measure for each month. Fi-
nally, merge these two data sets using an appropriate joining func-
tion.

3. Convert the sub_cases data frame from the previous exercise to
wide format so that each row displays the cases in each state for a
single month. Then, add on the average m50 overall for each month
as an additional column using a join function.

7
Visualization with ggplot2

The package ggplot2 (Wickham 2016) is another useful package in the tidy-
verse that allows statisticians to use visualizations to communicate key find-
ings and results in a compelling format. We will first learn about the three
main components in a ggplot object and then expand on that format by learn-
ing more about the different layers we can use to create various plots. As with
the tidyverse functions, there are quite a few functions to cover, and the
functions build on each other.

The three packages we will use in this chapter are tidyverse, HDSinRdata,
and patchwork (Pedersen 2022), the last of which is a nice package for com-
bining multiple plots together into a single figure. We will use the data from
the Pittsburgh pain clinic (Alter et al. 2021) introduced in Chapter 3 to create
our visuals. You can refresh your memory about this data by reading the data
documentation. For the purposes of this chapter, we take a sample of 5,000
patients that are complete cases at baseline to reduce the computation time
to display each plot. You can ignore how the code used to find this sample
works.

library(tidyverse)
library(HDSinRdata)
library(patchwork)
data(pain)

sampling data
set.seed(5)
pain_df_sub <- subset(pain,

select=-c(PAIN_INTENSITY_AVERAGE.FOLLOW_UP))
pain_df <- pain[complete.cases(pain_df_sub),]
pain_df <- pain_df[sample(1:nrow(pain_df), 5000, replace=FALSE),]

109

110 7 Visualization with ggplot2

7.1 Intro to ggplot
We’ll begin by demonstrating how to create a scatter plot in ggplot2 to
introduce the three key elements of a ggplot2 object. Specifically, we will
create a scatter plot of a patient’s depression vs. anxiety score. To start a
graph, we can use the ggplot() function to create a ggplot object as below.
Note that this brings up a gray box - this will be the base that we will build
up from.

ggplot()

Now we can start adding layers to our ggplot object. One type of layer is
a geom, which creates a geometric object. Below, we use the geom_point()
function to add a scatter plot layer. For this function, we first need to specify
which data we want to use, and then we need to tell R how to use that data to
create the scatter plot using the aes() function, which creates an aesthetic.
For a scatter plot, we need to at least specify the x-axis and y-axis in the
aesthetic. Both the data and the aesthetic can either be specified in our initial
ggplot() function, which will pass this information to all future layers, or in
the geom_point() function itself. Below, we specify the aesthetic in the geom
function but also include two alternative ways to code the same image that are
commented out. The resulting plot shows a fairly linear relationship between
anxiety and depression.

7.1 Intro to ggplot 111

ggplot(pain_df) + geom_point(aes(x=PROMIS_ANXIETY,
y = PROMIS_DEPRESSION))

40

50

60

70

80

40 50 60 70 80
PROMIS_ANXIETY

P
R

O
M

IS
_D

E
P

R
E

S
S

IO
N

Alternative 1:
ggplot(pain_df, aes(x = PROMIS_ANXIETY, y = PROMIS_DEPRESSION)) +
geom_point()

Alternative 2:
ggplot() +
geom_point(data = pain_df, aes(x = PROMIS_ANXIETY,

y = PROMIS_DEPRESSION))

If we want to improve our plot, we may want to add different labels and a title.
To do so, we use the labs() function to add a layer in which we can specify all
labels. Additionally, I have passed more information to the geometry layer by
changing the color, size, and shape of the points. These things are specified
outside of the aes() function since they do not come from the data - every
point has the same color, size, and shape in this example.

ggplot(pain_df)+
geom_point(aes(x=PROMIS_ANXIETY, y = PROMIS_DEPRESSION),

color="blue", size=2, shape=5) +
labs(x="PROMIS Anxiety Score", ylab="PROMIS Depression Score",

title = "Depression vs Anxiety Scores")

112 7 Visualization with ggplot2

40

50

60

70

80

40 50 60 70 80
PROMIS Anxiety Score

P
R

O
M

IS
_D

E
P

R
E

S
S

IO
N

Depression vs Anxiety Scores

Let’s create another example. This time, I will create a histogram for initial
recorded pain level. To find the corresponding geom for the type of plot we’d
like to make, we can use the data visualization cheat sheet from Posit1. The
first page lists all the geom options available along with what aesthetics we
can set for each option. For example, here we are interested in plotting the
distribution of one continuous variable, and under the geom_histogram() func-
tion we can see that we can specify x (the variable whose distribution we want
to plot) as well as binwidth, y, alpha, color, fill, linetype, size, and weight.
By default, the y value in a histogram is the count for each bin.

In the code below, you can see that we updated the color (color), fill (fill),
and opacity (alpha) of our histogram bars and updated the number of bins
to be 11 (to account for the possible values 0-10). Additionally, we used the
theme_minimal() function to change the background colors used. You can find
the available themes on the second page of the cheat sheet. Try changing the
theme of the above plot to theme_bw().

ggplot(pain_df)+
geom_histogram(aes(x=PAIN_INTENSITY_AVERAGE), color="violetred",

fill="lightblue", alpha=0.5, bins = 11) +
labs(x="Patient Reported Pain Intensity", y="Count")+
theme_minimal()

1https://posit.co/wp-content/uploads/2022/10/data-visualization-1.pdf

https://posit.co/wp-content/uploads/2022/10/data-visualization-1.pdf

7.2 Adjusting the Axes and Aesthetics 113

0

250

500

750

1000

0.0 2.5 5.0 7.5 10.0
Patient Reported Pain Intensity

C
ou

nt

7.1.1 Practice Question
Recreate Figure 7.1.

Insert your solution here:

7.2 Adjusting the Axes and Aesthetics
We can further control how each part specified in the aesthetic is displayed
using scale functions. For example, suppose that I wanted to update the plot
above. In particular, I first want to update the x-axis to display all of the
values 0 to 10 instead of 0, 2.5, 5, etc.. To update the x-axis, I need to find
the corresponding scale function for x with continuous values. This function
is scale_x_continuous(), which allows me to specify limits (limits), breaks
(breaks), and labels (labels). The scale functions can be found on the second
sheet of the cheat sheet. In this case, I just want to update the breaks to be
all integer values from 0 to 10.

ggplot(pain_df)+
geom_histogram(aes(x=PAIN_INTENSITY_AVERAGE), color="violetred",

fill="lightblue", alpha=0.5, bins = 11) +
labs(x="Patient Reported Pain Intensity", y="Count")+

114 7 Visualization with ggplot2

Figure 7.1: Line Plot.

scale_x_continuous(breaks=0:10)+
theme_minimal()

7.2 Adjusting the Axes and Aesthetics 115

0

250

500

750

1000

0 1 2 3 4 5 6 7 8 9 10
Patient Reported Pain Intensity

C
ou

nt

Now, let’s take a more complex example. The plot below shows each patient’s
reported sleep disturbance vs. physical function and colors each point by their
reported pain intensity. Since some points might overlap in values, we added
position="jitter" to the geom_point() function to jitter the points, which
corresponds to adding some random noise to each point’s position. As it stands,
this plot is difficult to read. For example, the color of pain intensity makes it
hard to see how pain changes, and the legend title needs to be simpler.

ggplot(pain_df)+
geom_point(aes(x=PROMIS_PHYSICAL_FUNCTION,

y=PROMIS_SLEEP_DISTURB_V1_0,
color=PAIN_INTENSITY_AVERAGE), position="jitter")

116 7 Visualization with ggplot2

40

60

80

20 30 40 50 60 70
PROMIS_PHYSICAL_FUNCTION

P
R

O
M

IS
_S

LE
E

P
_D

IS
T

U
R

B
_V

1_
0

0.0

2.5

5.0

7.5

10.0
PAIN_INTENSITY_AVERAGE

Suppose that we wanted to visualize the pain intensity and sleep disturbance
for patients with below-average physical function. Note that both sleep dis-
turbance and physical function are reported as T-Scores, meaning that the
raw scores have been converted to a standardized score with mean 50 and
standard deviation 10 within the population. We can use the scale functions
to update our axes and labels to reflect this information. As before, we need
to use the scale_x_continuous() function to update the x-axis for a continu-
ous variable. In this case, we update the limits (to restrict to below average
physical function), breaks, and labels. We similarly update the y-axis.

Lastly, suppose we want to update the color aesthetic. As before, this aes-
thetic corresponds to a continuous variable. The cheat sheet provides several
possible scale functions depending on how we want to specify the color gra-
dient. We choose the scale_color_gradient() function, since this allows us
to specify the low and high end colors. We can also specify the breaks for
the legend values similar to how we specified the breaks for the x and y axes.
The argument name also allows us to rename this legend. The palette then
converts this to a continuous color gradient. Note that in contrast to the
scale_color_gradient() function that we chose to use for this example, the
functions scale_color_gradient2() and scale_color_gradientn() allow you
to specify more color points in the gradient rather than just the two extreme
colors.

We can observe that decreased physical function is associated with higher
sleep disturbance and that those with worse physical function and worse sleep
disturbance tend to have higher reported pain. Note that this time we receive a
warning message, which is because our axis limits have cut off some points. To

7.2 Adjusting the Axes and Aesthetics 117

avoid this message, we could use the function coord_cartesian() to specify our
limits which clips the values rather than removing points outside the limits.

ggplot(pain_df)+
geom_point(aes(x=PROMIS_PHYSICAL_FUNCTION,

y=PROMIS_SLEEP_DISTURB_V1_0,
color=PAIN_INTENSITY_AVERAGE),

position="jitter", alpha=0.5) +
scale_x_continuous(limits=c(15,50), breaks = c(20, 30, 40, 50),

labels = c("-3 SD", "-2 SD", "-1 SD",
"Pop Mean")) +

scale_y_continuous(breaks = c(40, 50, 60, 70, 80),
labels = c("-1 SD", "Pop Mean", "+1 SD", "+2 SD",

"+3 SD")) +
scale_color_gradient(breaks= seq(0,10,2), low="green", high="red",

"Reported Pain") +
labs(x="PROMIS Physical Function T-Score",

y = "PROMIS Sleep Disturbance T-Score") +
theme_minimal()

#> Warning: Removed 121 rows containing missing values
(`geom_point()`).↪

−1 SD

Pop Mean

+1 SD

+2 SD

+3 SD

−3 SD −2 SD −1 SD Pop Mean
PROMIS Physical Function T−Score

P
R

O
M

IS
 S

le
ep

 D
is

tu
rb

an
ce

 T
−

S
co

re

0

2

4

6

8

10
Reported Pain

We now demonstrate these scale functions for discrete variables. In the exam-
ple below, we first create a new race variable that has only three categories
since other groups have limited observations. We then create a box plot for
pain intensity by race. There are two discrete aesthetics here: color and the

118 7 Visualization with ggplot2

y-axis. This plot shows a higher median pain for black patients compared to
other races.

pain_df$PAT_RACE_CAT <- ifelse(pain_df$PAT_RACE %in% c("BLACK",
"WHITE"),

pain_df$PAT_RACE, "OTHER")
pain_df$PAT_RACE_CAT <- as.factor(pain_df$PAT_RACE_CAT)

ggplot(pain_df)+
geom_boxplot(aes(y=PAT_RACE_CAT, x=PAIN_INTENSITY_AVERAGE,

fill=PAT_RACE_CAT), alpha=0.5) +
theme_minimal()

BLACK

OTHER

WHITE

0.0 2.5 5.0 7.5 10.0
PAIN_INTENSITY_AVERAGE

PA
T

_R
A

C
E

_C
AT PAT_RACE_CAT

BLACK

OTHER

WHITE

The function scale_y_discrete() is the scale function that corresponds to a
discrete y-axis. In this case, we want to update the order and labels of this y-
axis. To update the order, we can either refactor the variable using factor()
prior to plotting or update the limits argument of the scale function. The
function scale_fill_brewer() is a scale function to control the color palette
of a discrete variable used for the fill aesthetic. We use this function to specify
the color palette (palette) and to specify that that we do not want a legend
(guide). Since we do not have a legend, we do not update the values and labels
in this function.

ggplot(pain_df)+

7.2 Adjusting the Axes and Aesthetics 119

geom_boxplot(aes(y=PAT_RACE_CAT, x=PAIN_INTENSITY_AVERAGE,
fill=PAT_RACE_CAT), alpha=0.5) +

scale_x_continuous(breaks=c(0:10)) +
scale_y_discrete(limits=c("OTHER", "WHITE", "BLACK"),

labels=c("Other", "White", "Black")) +
scale_fill_brewer(palette="Dark2", guide="none") +
labs(x="Reported Pain Intensity", y="Reported Race") +
theme_minimal()

Other

White

Black

0 1 2 3 4 5 6 7 8 9 10
Reported Pain Intensity

R
ep

or
te

d
R

ac
e

The RColorBrewer package (Neuwirth 2022) contains several default
palettes to choose from, shown below. You can also create your own palette
using the brewer.pal() function from this package. To visualize a palette you
can use the available online tool2.

library(RColorBrewer)
display.brewer.all()

2https://colorbrewer2.org/

https://colorbrewer2.org/

120 7 Visualization with ggplot2

Figure 7.2: RColorBrewer Palettes.

Here is one more example of how you can use the scale functions - take a look
at the code below. We used two geom_histogram() calls, or layers, to plot a
histogram of pain at baseline and at follow-up. This allows us to visualize that
pain at follow-up tends to be lower than at baseline.

We also specify the fill to be by “Baseline” and “Follow-up” within the aes-
thetic, even though this isn’t a column in the data: this is a sort of manual way
to color the bars. We use the scale_fill_manual() function to then specify
the colors we want to use for these two categories using the values argument.
We received three warnings when creating this plot! This is because we have
many NA values for follow-up and because we did not specify the bin size for
either histogram. C’est la vie.

ggplot(pain_df)+
geom_histogram(aes(x=PAIN_INTENSITY_AVERAGE, fill="Baseline")) +
geom_histogram(aes(x=PAIN_INTENSITY_AVERAGE.FOLLOW_UP,

fill="Follow-Up")) +
scale_x_continuous(breaks=c(0:10)) +
scale_fill_manual(values=c("violetred", "pink"),

name="Measurement") +
labs(x="Reported Pain Intensity", y = "Count") +
theme_minimal()

#> Warning: Removed 3604 rows containing non-finite values
(`stat_bin()`).↪

7.3 Adding Groups 121

0

250

500

750

1000

0 1 2 3 4 5 6 7 8 9 10
Reported Pain Intensity

C
ou

nt

Measurement

Baseline

Follow−Up

7.3 Adding Groups
In the example above, we created two histograms using two calls to the
geom_histogram() function, but there is another way to create multiple layers
like this when you have a variable that you want to separate the geom layer
on. For example, suppose we want to visualize the distribution of physical
function by whether someone has follow-up information. Below we create the
variable HAS_FOLLOW_UP before using it in our aesthetic for geom_density() as
both the color and group. In fact, we do not have to add the group argument
because as soon as we specify to R that we want to color the density plots
by this variable, R will create the grouping. Finally, we update the legend for
this grouping using the scale_color_discrete() function, since the discrete
variable HAS_FOLLOW_UP specifies the color.

pain_df$HAS_FOLLOW_UP <-
!is.na(pain_df$PAIN_INTENSITY_AVERAGE.FOLLOW_UP)

ggplot(pain_df) +
geom_density(aes(x=PROMIS_PHYSICAL_FUNCTION, group=HAS_FOLLOW_UP,

color=HAS_FOLLOW_UP)) +
scale_x_continuous(breaks=c(0:10)) +
scale_color_discrete(name="Follow-Up", labels = c("No", "Yes")) +
labs(x="PROMIS Physical Function T-Score", y="Estimated Density") +
theme_minimal()

122 7 Visualization with ggplot2

0.00

0.02

0.04

0.06

PROMIS Physical Function T−Score

E
st

im
at

ed
 D

en
si

ty

Follow−Up

No

Yes

Let’s try another example. Suppose that we want to find the distribution of
initial overall pain by those that do and do not have follow up. In this case,
we want to plot the proportion of each pain score for each group rather than
comparing counts. We first need to find these proportions, which we do by
grouping and summarizing over our data.

pain_df_grp <- pain_df %>%
group_by(HAS_FOLLOW_UP, PAIN_INTENSITY_AVERAGE) %>%
summarize(tot = n()) %>%
mutate(prop = tot/sum(tot)) %>%
ungroup()

head(pain_df_grp)
#> # A tibble: 6 x 4
#> HAS_FOLLOW_UP PAIN_INTENSITY_AVERAGE tot prop
#> <lgl> <dbl> <int> <dbl>
#> 1 FALSE 0 8 0.00222
#> 2 FALSE 1 16 0.00444
#> 3 FALSE 2 62 0.0172
#> 4 FALSE 3 132 0.0366
#> 5 FALSE 4 273 0.0757
#> # i 1 more row

We can now use the geom_col() function to create a bar plot of these propor-
tions. By default, this function will stack the bars on top of each other when

7.3 Adding Groups 123

there is grouping. Try adding position="dodge" to the geom_col() function to
place the bars side by side instead of on top of each other.

ggplot(pain_df_grp)+
geom_col(aes(x=PAIN_INTENSITY_AVERAGE, y=prop,

fill=HAS_FOLLOW_UP)) +
scale_x_continuous(breaks=c(0:10)) +
scale_fill_discrete(name="Seen at Follow Up",

labels=c("No", "Yes")) +
labs(x="Reported Pain Intensity", y = "Proportion") +
theme_minimal()

0.0

0.1

0.2

0.3

0.4

0 1 2 3 4 5 6 7 8 9 10
Reported Pain Intensity

P
ro

po
rt

io
n Seen at Follow Up

No

Yes

7.3.1 Practice Question
Recreate Figure 7.3.

Insert your solution here:

Another way to visualize data by group is to add a facet wrap to your ggplot
object. Facets divide a plot into subplots based on one or more discrete vari-
able values. We can either arrange these plots as a grid where the rows and/or
columns correspond to the variables we are grouping by using facet_grid()
and specifying the column and row variables using the col and row argu-
ments respectively. Or we can wrap the plots into a rectangular format using
facet_wrap() and specifying the columns using the facet argument. Below,

124 7 Visualization with ggplot2

Figure 7.3: BMI Distribution.

we take one of our previous plots and add a facet grid where the columns
of the grid are given by racial group. If we had set row=vars(PAT_RACE_CAT),
then this would stack the plots vertically. Note that we have to specify the
variables inside the vars() function.

ggplot(pain_df)+
geom_histogram(aes(x=PAIN_INTENSITY_AVERAGE, fill="Baseline")) +
geom_histogram(aes(x=PAIN_INTENSITY_AVERAGE.FOLLOW_UP,

fill="Follow-Up")) +
scale_x_continuous(breaks=c(0:10)) +
scale_fill_manual(values=c("violetred", "pink"),

name="Measurement") +
labs(x="Reported Pain Intensity", y = "Count") +
facet_grid(row=vars(PAT_RACE_CAT))+
theme_minimal()

#> Warning: Removed 3604 rows containing non-finite values
(`stat_bin()`).↪

7.4 Extra Options 125

B
LA

C
K

O
T

H
E

R
W

H
IT

E

0 1 2 3 4 5 6 7 8 9 10

0

200

400

600

800

0

200

400

600

800

0

200

400

600

800

Reported Pain Intensity

C
ou

nt

Measurement

Baseline

Follow−Up

7.4 Extra Options
To create our final plot, we will demonstrate some extra features we haven’t
covered so far. To create this plot, we first find the number of participants
who selected each body region as well as the average pain intensity for those
patients. We also classify each body part region into larger groups.

pain_body_map <- data.frame(part = names(pain_df)[2:75])
pain_body_map$num_patients <- colSums(pain_df[,2:75])
pain_body_map$perc_patients <- pain_body_map$num_patients /

nrow(pain_df)
pain_body_map$avg_pain <- colSums(pain_df[,2:75] *

pain_df$PAIN_INTENSITY_AVERAGE) /
pain_body_map$num_patients

pain_body_map <- pain_body_map %>%
mutate(region = case_when(
part %in% c("X208", "X209", "X218","X219","X212","X213") ~ "Back",
part %in% c("X105", "X106", "X205","X206") ~ "Neck",
part %in% c("X107", "X110", "X207","X210") ~ "Shoulders",
part %in% c("X108","X109","X112","X113") ~ "Chest/Abs",
part %in% c("X126","X127","X228","X229",

"X131","X132","X233","X234")~"Legs",
part %in% c("X111","X114","X211","X214","X115","X116",

126 7 Visualization with ggplot2

"X117","X118","X217","X220")~"Arms",
part %in% c("X119","X124","X221","X226","X125","X128",

"X227","X230")~"Wrists/Hands",
part %in% c("X215","X216")~"Elbows",
part %in% c("X135","X136","X237","X238","X133","X134",

"X235","X236")~"Feet/Ankles",
part %in% c("X129","X130","X231","X232")~"Knees",
part %in% c("X101","X102","X103","X104","X201","X203",

"X202","X204")~"Head",
part %in% c("X120","X121","X122","X123","X222","X223",

"X224","X225")~"Hips"))

head(pain_body_map)
#> part num_patients perc_patients avg_pain region
#> 1 X101 323 0.0646 6.69 Head
#> 2 X102 322 0.0644 6.82 Head
#> 3 X103 165 0.0330 6.86 Head
#> 4 X104 165 0.0330 6.95 Head
#> 5 X105 493 0.0986 6.90 Neck
#> 6 X106 507 0.1014 6.92 Neck

Within the theme we’ve chosen, we are able to update any of the theme options
(see ?theme). Below we use the theme() function to update the legend position
to the bottom and the grid lines to light pink. Additionally, we add a horizontal
line using the geom_hline() function (geom_vline() and geom_abline() can
add vertical or diagonal lines respectively) and add a text annotation using
the annotate() function. The resulting plot below shows the average pain
value for each body part as well as the proportion of patients who categorized
it as being painful.

ggplot(pain_body_map) +
geom_label(aes(x=perc_patients, y=avg_pain, label=part,

color=region)) +
geom_hline(yintercept=mean(pain_body_map$avg_pain)) +
annotate(geom="text", label="Average Pain Value", x=0.35, y=7.0) +
labs(x="Proportion Patients Selected Region",

y="Average Pain of Patients") +
theme_minimal()+
theme(legend.position="bottom",

panel.grid.major = element_line(colour = "lightpink"))

7.4 Extra Options 127

X101

X102

X103

X104

X105
X106

X107

X108X109
X110

X111

X112X113

X114

X115

X116

X117

X118

X119

X120

X121

X122

X123

X124

X125
X126

X127X128

X129

X130

X131

X132

X133

X134X135

X136

X201
X202

X203

X204

X205
X206

X207

X208

X209

X210

X211 X212X213

X214

X215

X216

X217

X218X219

X220
X221

X222

X223X224

X225

X226

X227

X228
X229

X230

X231

X232

X233

X234

X235

X236

X237

X238

Average Pain Value

6.7

6.8

6.9

7.0

7.1

7.2

0.1 0.2 0.3 0.4 0.5
Proportion Patients Selected Region

A
ve

ra
ge

 P
ai

n
of

 P
at

ie
nt

s

region

a

a

a

a

a

a

a

a

a

a

a

a

Arms

Back

Chest/Abs

Elbows

Feet/Ankles

Head

Hips

Knees

Legs

Neck

Shoulders

Wrists/Hands

So far we have not saved any of our figures as objects. Below, I create two
plots and save them as objects named p1 and p2. If we want to save these
plots, we can use the ggsave() function, which saves the last plot generated
under the file name provided. Additionally, I can use the patchwork package
to incorporate multiple plots together. A + between plots puts them side by
side whereas / stacks them.

p1 <- ggplot(pain_body_map) +
geom_label(aes(x=perc_patients, y=avg_pain, label=part,

color=region)) +
geom_hline(yintercept=mean(pain_body_map$avg_pain)) +
annotate(geom="text", label="Average Pain Value", x=0.35, y=7.0) +
labs(x="Proportion Patients Selected Region",

y="Average Pain of Patients") +
theme_minimal()+
theme(legend.position="bottom",

panel.grid.major = element_line(colour = "lightpink"))

p2 <- ggplot(pain_body_map) +
geom_histogram(aes(x=perc_patients), color="violetred",

128 7 Visualization with ggplot2

fill="lightpink") +
labs(x="Proportion of Patients Selected Region", y="Count") +
theme_minimal()+
theme(panel.grid.major = element_line(colour = "lightpink"))

p1/p2

7.4 Extra Options 129

X101

X102

X103

X104

X105
X106

X107

X108X109
X110

X111

X112X113

X114

X115

X116

X117

X118

X119

X120

X121

X122

X123

X124

X125

X126
X127X128

X129

X130

X131

X132

X133

X134X135

X136

X201
X202

X203

X204

X205
X206

X207

X208

X209

X210

X211 X212X213

X214

X215

X216

X217

X218X219

X220
X221

X222

X223X224

X225

X226

X227

X228

X229
X230

X231

X232

X233

X234

X235

X236

X237

X238

Average Pain Value

6.7

6.8

6.9

7.0

7.1

7.2

0.1 0.2 0.3 0.4 0.5
Proportion Patients Selected Region

A
ve

ra
ge

 P
ai

n
of

 P
at

ie
nt

s

region

a

a

a

a

a

a

a

a

a

a

a

a

Arms

Back

Chest/Abs

Elbows

Feet/Ankles

Head

Hips

Knees

Legs

Neck

Shoulders

Wrists/Hands

0.0

2.5

5.0

7.5

10.0

12.5

0.0 0.1 0.2 0.3 0.4 0.5
Proportion of Patients Selected Region

C
ou

nt

130 7 Visualization with ggplot2

ggsave("images/visualization_ggplot/myplot.png")

7.5 Exercises
For this chapter’s exercises, use the covidcases data set that we first intro-
duced in Chapter 5 to recreate the plots below. These are complex plots, so
try to build them up one step at a time and just try to get as close as possible
to the given examples.

1. Replicate the plot in Figure 7.4, which shows the weekly Covid-19
cases by state in 2020 - the black vertical line signifies the week of
May 28th, 2020, which is when US cases passed the 100,000 mark
(AJMC Staff 2021), and NA values are displayed as white squares).
Hint: set negative weekly case counts to be NA and color the squares
with a log 10 transformation.

2. Replicate the plot in Figure 7.5, which is a stacked area chart for
the total deaths from Covid-19 in the states with the top ten total
death counts overall.

7.5 Exercises 131

Figure 7.4: Covid-19 Cases Over Time by State.

132 7 Visualization with ggplot2

Figure 7.5: Covid-19 Cases Over Time by State.

Part III

Distributions and
Hypothesis Testing

8
Probability Distributions in R

In this chapter, we will cover how to generate random samples in R from
known probability distributions and empirical distributions. All of the com-
mon probability distributions have a set of four functions in base R that can be
used to generate random samples and to calculate the corresponding density,
quantile, and cumulative functions that correspond to that distribution.

library(tidyverse)
library(HDSinRdata)
data(NHANESsample)

Below, we demonstrate an example of drawing random samples. Anytime we
do something in R in which the outcome has some randomness, we are using
R’s random number generator under the hood. This means that the results
will change every time we run our code. In order to make sure our code is
replicable, we have to set a random seed, which makes the results the same
every time. The set.seed() function takes in a numeric seed value. You can
use any number as the seed. Below, we first sample a random value from the
numbers 1 to 10 without setting a seed. Note that every time you run this
code chunk, the output can change. However, in the second code chunk we set
a seed, which means that the result will always be the same (in this case, it’s
equal to 2).

sample(1:10, 1)
#> [1] 4

set.seed(5)
sample(1:10, 1)
#> [1] 2

135

136 8 Probability Distributions in R

8.1 Probability Distributions in R
All of the common discrete (e.g. Bernoulli, binomial) and continuous (e.g. nor-
mal, uniform, exponential, poisson) probability distributions have correspond-
ing functions in R. For each of these distributions, there are four available
functions:

• r[dist](): generates random samples from the given distribution
(e.g. rnorm(), runif())

• d[dist](): density function for the distribution (e.g. dnorm(), dunif())

• p[dist](): cumulative distribution function for the distribution
(e.g. pnorm(), punif())

• q[dist](): quantile function for the distribution (e.g. qnorm(), qunif())

Let’s see how these work in practice, using the normal and binomial distribu-
tions as examples.

8.1.1 Random Samples
The code below generates a sample of 100 random numbers following a nor-
mal distribution with mean 5 and standard deviation 1. As you can see, the
function takes in n (the number of observations), mean (the mean with default
value 0), and sd (the standard deviation with default value 1). A histogram
plot (using the built-in hist() function) shows that the generated values look
roughly normally distributed.

x <- rnorm(n = 100, mean = 5, sd = 1)
hist(x)

8.1 Probability Distributions in R 137

Histogram of x

x

F
re

qu
en

cy

2 3 4 5 6 7

0
5

10
15

We can also input a vector instead of a single value for the mean or sd arguments
if we want each sample to come from its own normal distribution. As an
example, below we generate 100 random numbers with the default standard
deviation of 1 where half of the samples have mean 0 and the other half have
mean 5.

x <- rnorm(n = 100, mean = rep(c(0,5),50))
hist(x)

Histogram of x

x

F
re

qu
en

cy

−2 0 2 4 6 8

0
5

10
15

20

For the binomial distribution, the difference is that we need to specify a proba-
bility p and number of trials size (rather than mean and sd in the normal case)

138 8 Probability Distributions in R

to specify the distribution. Below, we generate 100 random numbers following
a binomial distribution with 10 trials and probability 0.5.

x <- rbinom(n = 100, p = 0.5, size = 10)
hist(x)

Histogram of x

x

F
re

qu
en

cy

0 2 4 6 8

0
5

10
20

We can also specify a different size or probability of success for each sample.
Below, we repeat our sample but this time let the probability of success be
0.25 for half of the sample and 0.75 for the other half.

x <- rbinom(n = 100, p = rep(c(0.25, 0.75), 50), size = 10)
hist(x)

8.1 Probability Distributions in R 139

Histogram of x

x

F
re

qu
en

cy

0 2 4 6 8 10

0
5

10
15

8.1.2 Density Function
Next, we look at the density function. Recall that the probability density
function for a normal distribution with mean 𝜇 and standard deviation 𝜎 is
given by the following formula.

𝑓𝑋(𝑥) = 1
𝜎

√
2𝜋 exp(−1

2 (𝑥 − 𝜇
𝜎)

2
)

Below, we can compare some of the values from the dnorm() function to this
equation and see that they are in fact equal. You can also specify the mean and
standard deviation in this function. Below we use the default values (mean =
0 and sd = 1).

dnorm(0) == 1/sqrt(2*pi)
#> [1] TRUE
dnorm(1) == exp(-1/2)/sqrt(2*pi)
#> [1] TRUE
dnorm(2) == exp(-1/2*2^2)/sqrt(2*pi)
#> [1] TRUE

If we wanted to find the density function for several values, we can input
a vector to this density function. Below we find the values of the density
function for a normal distribution with mean 1 and standard deviation 2 for
values c(-1, 0, 1, 2, 3).

140 8 Probability Distributions in R

dnorm(c(-1,0,1,2,3), mean = 1, sd = 2)
#> [1] 0.121 0.176 0.199 0.176 0.121

For the binomial distribution, dbinom() will return the probability of a certain
number of successes and corresponds to the probability density function.

𝑃(𝑋 = 𝑥) = (𝑠𝑖𝑧𝑒
𝑥)𝑝𝑥(1 − 𝑝)𝑠𝑖𝑧𝑒−𝑥.

Below, we find the probability of getting exactly 3 heads from 10 coin flips,
each with a probability of 0.5 for heads.

dbinom(3, size = 10, p = 0.5)
#> [1] 0.117

While dnorm() allows us to specify any continuous values for 𝑥, dbinom() will
give us a warning if x contains non-integer values since the support of a bino-
mial variable only includes integers.

dbinom(2.4, size = 10, p = 0.5)
#> Warning in dbinom(2.4, size = 10, p = 0.5): non-integer x = 2.400000
#> [1] 0

We can also specify a vector for a distribution’s parameters to find the distri-
bution function for different distributions. For example, below I find the the
probability density function for 𝑋 = 4 for the distribution with 𝑝 = 0.25 and
𝑝 = 0.5.

dbinom(4, size = 10, p = c(0.25, 0.5))
#> [1] 0.146 0.205

8.1.3 Cumulative Distribution
Next, we take a look at the cumulative distribution function. For the normal
distribution, the cumulative distribution is given by pnorm(), which takes in a
value x, a mean, and a sd and returns the probability that a random variable
following a 𝑁(𝑚𝑒𝑎𝑛, 𝑠𝑑) distribution is less than x. For example, for x equal
to the mean, this will be a fifty percent probability because the normal distri-
bution is symmetric with mean equal to the median. Below, we verify this for
two different values of the mean.

8.1 Probability Distributions in R 141

pnorm(0)
#> [1] 0.5
pnorm(5, mean = 5, sd = 1)
#> [1] 0.5

Since the binomial distribution is discrete, it can only take on integer values
from 0 to size. This means that, for example, the pbinom() function will return
the same value for 3, 3.5, 3.6, all the way up to, but not including, 4 - this
is because 𝑃 (𝑋 ≤ 3) = 𝑃(𝑋 ≤ 3.2) = 𝑃(𝑋 ≤ 3.5) = 𝑃(𝑋 ≤ 3.6) and so on.
Note that here we passed in a vector of values x.

pbinom(c(3, 3.5, 3.6, 4), size = 10, p = 0.5)
#> [1] 0.172 0.172 0.172 0.377

We can also vary the parameters for the distribution by passing a vector for
size and/or p to the cumulative distribution function. Below, we find the
probability that 𝑋 ≤ 3 and the probability that 𝑋 ≤ 4 with 12 trials and
probability 0.25 and with 10 trials and probability 0.5.

pbinom(c(3, 3, 4, 4), size = c(12, 10, 12, 10),
p=c(0.25, 0.5, 0.25, 0.5))

#> [1] 0.649 0.172 0.842 0.377

8.1.4 Quantile Distribution
Lastly, we have the quantile distribution function, which is the inverse of the
cumulative distribution function. This function takes in a probability x, a
mean, and a sd and returns the value for which the cumulative distribution
function is equal to x. Thus, when x is equal to 0.5, the qnorm() function
returns the median of the distribution, which is equal to the mean for the
normal distribution.

qnorm(0.5)
#> [1] 0
qnorm(0.5, mean = 5, sd = 1)
#> [1] 5

For the discrete binomial distribution, the qbinom() function returns the
largest integer value for which the probability of being less than or equal
to that value is at most the inputted value x.

142 8 Probability Distributions in R

qbinom(c(0.2, 0.3), size = 10, p = 0.5)
#> [1] 2 3

8.1.5 Reference List for Probability Distributions
In the examples above, we only used the normal and binomial distributions -
the other probability distributions available in R are given below. For each dis-
tribution, we have given the arguments for the r[dist]() function. The other
three functions have a similar format. Unless otherwise stated, the parameter
n is the number of observations.

• Beta: rbeta(n, shape1, shape2, ncp = 0) with shape parameters shape1
and shape2 (and optional non-centrality parameter ncp).

• Binomial: rbinom(n, size, prob) with probability of success prob and
number of trials size

• Cauchy: rcauchy(n, location = 0, scale = 1) with location parameter
location and scale parameter scale.

• Chi-Square: rchisq(n, df, ncp = 0) with df degrees of freedom and
optional non-centrality parameter ncp.

• Exponential: rexp(n, rate = 1) with rate rate (i.e., mean = 1/rate).
• F: rf(n, df1, df2, ncp) with df1 and df2 degrees of freedom (and optional

non-centrality parameter ncp).
• Gamma: rgamma(n, shape, rate = 1, scale = 1/rate) with parameters

shape and scale (or alternatively specified by rate).
• Geometric: rgeom(n, prob) with probability parameter prob.
• Hypergeometric: rhyper(nn, m, n, k) with m white balls, n black balls,

and k balls chosen.
• Logistic: rlogis(n, location = 0, scale = 1) with parameters location

and scale.
• Log Normal: rlnorm(n, meanlog = 0, sdlog = 1) with mean meanlog and

standard deviation sdlog on the log scale.
• Negative Binomial: rnbinom(n, size, prob, mu) with parameters size

and prob.
• Normal: rnorm(n, mean = 0, sd = 1) with mean equal to mean and standard

deviation equal to sd.
• Poisson: rpois(n, lambda) with parameter lambda.
• Student t: rt(n, df, ncp) with df degrees of freedom (and optional non-

centrality parameter ncp).
• Uniform: runif(n, min = 0, max = 1) with minimum value min and maxi-

mum value max.
• Weibull: rweibull(n, shape, scale = 1) with parameters shape and scale.
• Wilcoxon Rank Sum: rwilcox(nn, m, n) with nn number of observations

and sample sizes m and n.

8.2 Empirical Distributions and Sampling Data 143

• Wilcoxon Signed Rank: rsignrank(nn, n) with nn number of observations
and sample size n.

8.1.6 Practice Question
Set the random seed to be 123, and then generate 5 random numbers following
a uniform distribution with min 1 and max 5. Then, find the 0.15 quantile for
this same distribution (it should be equal to 1.6).

Insert your solution here:

8.2 Empirical Distributions and Sampling Data
At the start of this chapter, we used the sample() function. This function can
also be used to sample from an empirical distribution. The sample(x, size,
replace=FALSE, prob=NULL) function takes in the values we want to sample
from x, the number of observations we want to sample size, and whether we
want to sample with replacement replace. If we don’t want to sample such
that each value has an equal probability of being chosen, we can also set a
probability vector prob, which must have the same length as x. Below we
sample 500 rows without replacement from the NHANESsample data. To do so,
we select 500 values from the indices 1 to the number of rows in the data. We
then select rows of the data using these indices.

nhanes_sample_ids <- sample(1:nrow(NHANESsample), 500, replace=FALSE)
nhanes_sample <- NHANESsample[nhanes_sample_ids,]
dim(nhanes_sample)
#> [1] 500 21

We now demonstrate sampling with replacement. By doing so, we create a
new data set that is sampled from the empirical distribution of the data and
that is called a bootstrap sample.

nhanes_sample_ids <- sample(1:nrow(NHANESsample), nrow(NHANESsample),
replace=TRUE)

nhanes_sample <- NHANESsample[nhanes_sample_ids,]
dim(nhanes_sample)
#> [1] 31265 21

144 8 Probability Distributions in R

Another way to sample from a data frame is to use the slice_sample() function
from the tidyverse. In this function, we can either specify the number of
observations to sample n or the proportion of observations to sample prop.
Additionally, we can sample with or without replacement by setting the value
of the argument replace (with default value FALSE). We use this function
below to randomly sample 20% of observations without replacement.

nhanes_sample <- NHANESsample %>%
slice_sample(prop = 0.2, replace = FALSE)

dim(nhanes_sample)
#> [1] 6253 21

8.2.1 Practice Question
Set the random seed to 5 and then sample 50 observations with replacement
from the set of integers from 1 to 100. Take the mean of those observations -
it should be 56.7.

Insert your solution here:

Beyond sampling, we can also find the empirical cumulative distribution. That
is, we can use a given vector to infer a distribution. In the case below, we draw
a random sample from a normal distribution vec and then find its empirical cu-
mulative distribution using the ecdf() function. This function actually returns
a function, which can then be used to find the sample cumulative distribution
for different values similar to the p[dist]() functions. Below, we find the
sample probability that 𝑋 ≤ 0.

vec <- rnorm(100)
ecdf_vec <- ecdf(vec)
ecdf_vec(0)
#> [1] 0.63

We plot this empirical distribution against the actual cdf using the pnorm()
function below. Note that in order to do so, we create a sequence of possible
x values to pass to both pnorm() and ecdf_vec().

df <- data.frame(x = seq(-3, 3, 0.05))
df$ecdf <- ecdf_vec(df$x)
df$distn = pnorm(df$x)

8.3 Exercises 145

ggplot(df) +
geom_line(aes(x=x, y=ecdf), color = "black") +
geom_line(aes(x=x, y=distn), color= "red")

0.00

0.25

0.50

0.75

1.00

−2 0 2
x

ec
df

In practice, the empirical cumulative distribution might involve data from a
given data set that you want to use to represent the population’s distribution.
As an example, below we find the empirical distribution of blood lead level
from the NHANESsample data frame. A blood lead level of 5 µg/dL or above is
considered elevated. We can see 96.4% of observations have a blood lead level
below this threshold.

ecdf_lead <- ecdf(nhanes_sample$LEAD)
ecdf_lead(5)
#> [1] 0.961

8.3 Exercises
1. Assume the distribution of female heights is approximated by a nor-

mal distribution with a mean of 64 inches and a standard deviation
of 2.2 inches. Using this distribution, answer the following questions.

• What is the probability that a randomly chosen female is 5 feet or shorter?

146 8 Probability Distributions in R

• What is the probability that a randomly chosen female is 6 feet or taller?

• Generate 500 random observations following this distribution and find the
sample 0.15 quantile. Then, compare this to the 0.15 quantile using the
qdist() function.

2. Compute the probability that the height of a randomly chosen fe-
male is within 1 SD from the average height.

3. Create a vector of 100 patient IDs, and then use the sample() func-
tion to assign half of them to a treatment group and the other half
to a control group. Then, suppose those in the control group have
a reduction in viral load distributed as 𝑋 ∼ 100 ∗ 𝑒𝑥𝑝(𝑚𝑒𝑎𝑛 = 𝑉),
where 𝑉 follows a uniform distribution between 1 and 2, whereas
those who are in the treatment group have a reduction in viral
load distributed as 𝑋 ∼ 100 ∗ 𝑒𝑥𝑝(𝑚𝑒𝑎𝑛 = 3). Plot distributions of
reduction in viral load for both groups.

9
Hypothesis Testing

In this chapter, we will look at hypothesis testing in R. We will start with single
sample distributions and tests, and then we will look at hypothesis tests for
comparing two samples. Examples will include testing for positive correlations,
performing two sample paired t-tests, and testing for equal variance among
groups. The data we will use in this section comes from the Texas Health and
Human Services Department and includes the reported number of induced
terminations of pregnancy (ITOPs) from 2016 to 2021, stratified by both race
and county (Texas Health & Human Services Commission 2016-2021). The
data also contains the rate of abortions per 1000 females aged 15-49. Read
the data documentation to see the full variable descriptions.

We will use the tidyverse, gt, and gtsummary packages to help manipulate
and summarize the data. The car package (Fox, Weisberg, and Price 2023)
contains the function leveneTest() to implement a Levene’s test for homo-
geneity of variance across groups, and all other hypothesis tests are available
in base R.

library(tidyverse)
library(car)
library(HDSinRdata)
library(gt)
library(gtsummary)
data(tex_itop)

9.1 Univariate Distributions and One Sample Tests
Let’s begin by looking at a single outcome of interest - the number of induced
terminations of pregnancy (referred to as ITOPs or abortions below) in 2021
per 1000 females ages 15-49 in each county. We use the number of females
ages 15-49 as a proxy to scale the number of abortions by the population size,
though this is not truly reflective of the number of people who can give birth
in each county.

147

148 9 Hypothesis Testing

county_rates_2021 <- tex_itop$total_rate[tex_itop$year == 2021]
hist(county_rates_2021, breaks = 35)

Histogram of county_rates_2021

county_rates_2021

F
re

qu
en

cy

0 20 40 60 80 100

0
40

80
12

0

We can see in the figure that this is a heavy-tailed distribution. Below, we find
the 10 counties with the highest rates and see that there are some counties
that very few total abortions but that have some of the highest abortion rates.
This indicates a small population. On the other hand, we also observe Harris
county, which contains the city of Houston and has both a high total abortion
count and a high abortion rate.

tex_itop %>%
filter(year==2021) %>%
slice_max(n=10, total_rate) %>%
dplyr::select(c(county, total_itop, total_rate))

#> # A tibble: 10 x 3
#> county total_itop total_rate
#> <chr> <dbl> <dbl>
#> 1 Loving 1 111.
#> 2 Terrell 5 50
#> 3 Concho 4 13.9
#> 4 Harris 14122 13.5
#> 5 Irion 3 12.9
#> # i 5 more rows

Some of the counties are so small that we may want to consider dropping
them from our analysis. In particular, the rates in Loving County and Terrel

9.1 Univariate Distributions and One Sample Tests 149

County are so high that we might consider them to be outliers. For this one
sample analysis, however, we do not remove them. If we wanted to estimate
the mean abortion rate among counties 𝜇 we can do so by simply using the
mean() function. For reference, the Center for Disease Control estimated the
national abortion rate in 2020 to be 11.2 abortions per 1,000 women aged
15–44 years (Kortsmit 2023).

mean(county_rates_2021, na.rm=TRUE)
#> [1] 5.17

Within R we can also calculate a confidence interval for this mean. Recall
that a (1 − 𝛼)% confidence interval for the mean is given by the equation

̂𝜇 ± 𝑧1−𝛼/2 ⋅ �̂�√𝑛 , where ̂𝜇 is our sample mean, �̂�2 is the sample variance, and
𝑛 is the number of observations.

Below, we use this formula to calculate a 95% confidence interval for the mean
abortion rate among counties:

est_mean <- mean(county_rates_2021, na.rm=TRUE)
est_sd <- sd(county_rates_2021)
z_alpha <- dnorm(1-0.05/2)
n <- length(county_rates_2021)
c(est_mean - z_alpha*est_sd/sqrt(n),
est_mean + z_alpha*est_sd/sqrt(n))

#> [1] 5.04 5.29

If we want to display this nicely, we can use the round() function, which allows
us to specify a number of digits to be displayed, and the paste() function,
which creates a single character string from multiple inputs.

lower <- round(est_mean - z_alpha*est_sd/sqrt(n),3)
upper <- round(est_mean + z_alpha*est_sd/sqrt(n),3)
paste("Confidence Interval: (", lower, ",", upper, ")")
#> [1] "Confidence Interval: (5.044 , 5.289)"

Suppose that we wanted to run a hypothesis test to compare the mean to a
pre-determined value. In particular, the Texas Heartbeat Act was introduced
in 2021 and drastically reduced the number of eligible abortions. We could
test whether there were significantly fewer abortions in 2021 compared to
2020 using a one-sided t-test. Our null hypothesis is that 𝜇 ≥ 6.23, the mean
abortion rate in 2020. To run this hypothesis test, we use the t.test() function.
For a one sample t-test, we need to specify our sample x, the alternative
hypothesis alternative (default is a two-sided test), the true value of the

150 9 Hypothesis Testing

mean mu (default 0), and a confidence level conf.level (default 0.95). Below,
we run this t-test, and we can see from the result that we reject the null
hypothesis at the 0.05 level and observe a statistically significant decline in
the abortion rate in 2021.

t.test(county_rates_2021, alternative = "less", mu = 6.23,
conf.level=0.95)

#>
#> One Sample t-test
#>
#> data: county_rates_2021
#> t = -2, df = 253, p-value = 0.02
#> alternative hypothesis: true mean is less than 6.23
#> 95 percent confidence interval:
#> -Inf 5.98
#> sample estimates:
#> mean of x
#> 5.17

The output for this test is printed above. If we want to reference these values,
we will need to save the result. The object t_test_res is a list that contains
information about the statistic, p-value, confidence interval, etc. The list of
outputs are similar to other test objects, so it is useful to look at what is
contained in each by reading the test documentation (?t.test). Below, we
find the p-value from t_test_res.

t_test_res <- t.test(county_rates_2021, alternative = "less",
mu = 6.23, conf.level=0.95)

names(t_test_res)
#> [1] "statistic" "parameter" "p.value" "conf.int"
#> [5] "estimate" "null.value" "stderr" "alternative"
#> [9] "method" "data.name"

t_test_res$p.value
#> [1] 0.0161

9.1.1 Practice Question
Test whether there were significantly more abortions in 2019 compared to 2020
using a one-sided t-test. Your test statistic should be -6.4736.

9.2 Correlation and Covariance 151

Insert your solution here:

One thing to consider is that the t.test() function assumes that the sample x
comes from a normal distribution. The one-sample Wilcoxon signed rank test
is a non-parametric alternative to the one-sample t-test that can be used to
compare the median value of a sample to a theoretical value without assuming
that the data is normally distributed. This test can be performed using the
wilcox.test() function and takes in the same arguments as the t.test()
function. Below, we can see that we again reject the null hypothesis at the
0.05 level and conclude that the median abortion rate in 2021 was significantly
lower than 5.14, which was the median rate in 2020.

wilcox_res <- wilcox.test(county_rates_2021, alternative = "less",
mu = 5.14, conf.level=0.95)

wilcox_res
#>
#> Wilcoxon signed rank test with continuity correction
#>
#> data: county_rates_2021
#> V = 12807, p-value = 0.002
#> alternative hypothesis: true location is less than 5.14
wilcox_res$p.value
#> [1] 0.00193

9.2 Correlation and Covariance
We now look at two sample tests. To start, we look at the 2020 and 2021 rates
by county. We pivot our data into a wider format in order to create 2020 and
2021 rate columns, and, this time, we filter out the Loving and Terrel counties
to remove outliers. We then create a scatter plot of 2021 vs. 2020 rates and
observe a linear correlation between the two.

county_rates <- tex_itop %>%
dplyr::select(c(county, total_rate, year)) %>%
filter(!(county %in% c("Terrell", "Loving")),

year %in% c(2020, 2021)) %>%
pivot_wider(names_from = year, values_from = total_rate) %>%
na.omit() %>%
rename("y2020"="2020", "y2021"="2021")

152 9 Hypothesis Testing

head(county_rates)
#> # A tibble: 6 x 3
#> county y2020 y2021
#> <chr> <dbl> <dbl>
#> 1 Anderson 6.84 5.07
#> 2 Andrews 1.85 0.792
#> 3 Angelina 5.81 6.00
#> 4 Aransas 3.44 7.18
#> 5 Archer 1.47 0.733
#> # i 1 more row

ggplot(county_rates) +
geom_point(aes(x=y2020,y=y2021)) +
labs(x="2020 ITOP Rates", y="2021 ITOP Rates")

0

5

10

0 5 10 15 20 25
2020 ITOP Rates

20
21

 IT
O

P
 R

at
es

We have seen before how to calculate the correlation between two columns
using the cor() function. We can also calculate the covariance using the cov()
function. As suspected, there is a positive correlation. The estimated covari-
ance is around 5.2.

cor(county_rates$y2020, county_rates$y2021)
#> [1] 0.5
cov(county_rates$y2020, county_rates$y2021)
#> [1] 5.2

9.3 Two Sample Tests for Continuous Variables 153

Besides calculating the value of the correlation, we can also test whether
this correlation is significantly different from zero. The function cor.test()
tests for association between paired samples, using either Pearson’s product
moment correlation coefficient, Kendall’s 𝜏 , or Spearman’s 𝜌. Similar to the
t.test() and wilcox.test() functions, we can also specify the alternative
and conf.level arguments. Below, we test whether there is a non-zero correla-
tion between the 2020 and 2021 county rates using Pearson’s product-moment
correlation. We can see from the resulting p-value that we can reject the null
hypothesis that the correlation is zero and conclude that it is instead signif-
icantly different than zero. This time we also print the computed confidence
interval for our estimate.

cor_test_res <- cor.test(county_rates$y2020,
county_rates$y2021, method="pearson")

cor_test_res
#>
#> Pearson's product-moment correlation
#>
#> data: county_rates$y2020 and county_rates$y2021
#> t = 9, df = 250, p-value <2e-16
#> alternative hypothesis: true correlation is not equal to 0
#> 95 percent confidence interval:
#> 0.401 0.587
#> sample estimates:
#> cor
#> 0.5

cor_test_res$conf.int
#> [1] 0.401 0.587
#> attr(,"conf.level")
#> [1] 0.95

9.3 Two Sample Tests for Continuous Variables
If we wanted to directly compare the difference between 2020 and 2021 rates,
we could use a two sample test. In this case, because our samples are paired by
county, we can use a two sample paired t-test. Specifically, we use a two-sided
test to test the null hypothesis that the rates are equal by specifying two dif-
ferent vectors x and y. Note that we used the default values of mu=0 and alter-
native="two.sided". Additionally, we used the default value var.equal=FALSE,

154 9 Hypothesis Testing

which implies that the samples may have different variances. From the results
below, we reject the null hypothesis that the two county rates are equal at the
0.05 level. We also print a 95% confidence interval of the difference in means.

t_test_two_res <- t.test(x=county_rates$y2020, y=county_rates$y2021)
t_test_two_res
#>
#> Welch Two Sample t-test
#>
#> data: county_rates$y2020 and county_rates$y2021
#> t = 2, df = 497, p-value = 0.01
#> alternative hypothesis: true difference in means is not equal to 0
#> 95 percent confidence interval:
#> 0.145 1.278
#> sample estimates:
#> mean of x mean of y
#> 5.28 4.57
t_test_two_res$conf.int
#> [1] 0.145 1.278
#> attr(,"conf.level")
#> [1] 0.95

In the tex_itop dataset, each county has also been categorized by whether
it was urban or rural. Suppose we want to compare the change in abortion
rates from 2020 to 2021 between rural and urban counties. First, we create a
variable describing the rate change between these years using the code below.
We choose to use the change in rate rather than percent change to avoid
infinite or undefined values.

county_rates_type <- tex_itop %>%
dplyr::select(c(county, urban, county_type, total_rate, year)) %>%
filter(total_rate < 15, year %in% c(2020, 2021)) %>%
pivot_wider(names_from = year, values_from = total_rate) %>%
na.omit() %>%
rename("y2020"="2020", "y2021"="2021") %>%
mutate(rate_change = (y2021-y2020))

We again use a two-sample two-sided t-test, but this time the data is not
paired. Below, we show an alternative way to specify a t-test test below using
a formula lhs ~ rhs, where lhs is a numeric column and rhs is a factor
column with two levels. We must also specify the data in this case. From the
R output in this case, we would fail to reject the null hypothesis at the 0.05
level and conclude that the rate changes for urban and rural counties are not

9.3 Two Sample Tests for Continuous Variables 155

significantly different. We also print the estimates used in the t-test using
estimate, which shows the estimated mean in both groups.

t_test_unpaired <- t.test(rate_change~urban, data=county_rates_type)
t_test_unpaired
#>
#> Welch Two Sample t-test
#>
#> data: rate_change by urban
#> t = 0.1, df = 205, p-value = 0.9
#> alternative hypothesis: true difference in means between group

Rural and group Urban is not equal to 0↪

#> 95 percent confidence interval:
#> -0.495 0.563
#> sample estimates:
#> mean in group Rural mean in group Urban
#> -0.469 -0.503
t_test_unpaired$estimate
#> mean in group Rural mean in group Urban
#> -0.469 -0.503

Note that this yields the same results as if we had specified the data using
two vectors x and y.

x <- county_rates_type$rate_change[county_rates_type$urban == 'Urban']
y <- county_rates_type$rate_change[county_rates_type$urban == 'Rural']
t.test(x=x, y=y, paired = FALSE)
#>
#> Welch Two Sample t-test
#>
#> data: x and y
#> t = -0.1, df = 205, p-value = 0.9
#> alternative hypothesis: true difference in means is not equal to 0
#> 95 percent confidence interval:
#> -0.563 0.495
#> sample estimates:
#> mean of x mean of y
#> -0.503 -0.469

Besides a t-test, we can also use a two-sample Wilcoxon non-parametric test
using the wilcox.test() function, which has the same arguments as the func-
tion t.test(). Both the t.test() and wilcox.test() can only compare two
groups. When we want to compare two or more independent samples, we can

156 9 Hypothesis Testing

use a Kruskal-Wallis rank sum test using the kruskal.test() function or a
one-way analysis of variance (ANOVA) using the aov() function.

This time we use the column county_type, which is an indicator for whether
the county is urban, suburban, or rural according to the RUCC (rural-
urban continuum codes) from the U.S. Department of Agriculture. For
the kruskal.test() function, we can either specify the arguments formula
(rate_change ~ county_type) and data (county_rates_type) or we can specify
two vectors: x, a numeric vector, and g, a factor representing the group. For
the aov() function, we specify the test using a formula and the data. To see
the p-value, we have to use the summary() function to print the result. Again,
both tests suggest that we fail to reject the null hypothesis at the 0.05 level.

kruskal.test(county_rates_type$rate_change,
county_rates_type$county_type)

#>
#> Kruskal-Wallis rank sum test
#>
#> data: county_rates_type$rate_change and

county_rates_type$county_type↪

#> Kruskal-Wallis chi-squared = 2, df = 2, p-value = 0.3

aov_res <- aov(rate_change~county_type, data=county_rates_type)
summary(aov_res)
#> Df Sum Sq Mean Sq F value Pr(>F)
#> county_type 2 7 3.36 0.53 0.59
#> Residuals 245 1547 6.31

9.3.1 Practice Question
Use an appropriate test to determine whether the ITOP rates in 2016 signif-
icantly differed by race. The test statistic should be 264.27 with associated
p-value < 2.2e-16.

Insert your solution here:

9.3.2 Two Sample Variance Tests
We could also test whether the variance of a continous variable is equal be-
tween groups. To start, we compare the variance in abortion rates in 2021
between urban and rural counties using an F test. Our null hypothesis for this
test is that the variance in both groups is equal. The function var.test() im-

9.3 Two Sample Tests for Continuous Variables 157

plements an F test and has the same main arguments as the t.test() function:
vectors x and y OR a formula and data, the alternative hypothesis alterna-
tive, and conf.level. Additionally, we can specify the hypothesized ratio of
the variances through the arugment ratio (default value 1). Note that this
function assumes that the two samples come from normally distributed pop-
ulations. We fail to reject the null hypothesis that the variance in rates are
equal at the 0.05 level and print the estimate of the ratio of variances, which
is around 1.11.

f_test <- var.test(y2021 ~ urban, county_rates_type)
f_test
#>
#> F test to compare two variances
#>
#> data: y2021 by urban
#> F = 1, num df = 187, denom df = 59, p-value = 0.6
#> alternative hypothesis: true ratio of variances is not equal to 1
#> 95 percent confidence interval:
#> 0.719 1.657
#> sample estimates:
#> ratio of variances
#> 1.12
f_test$estimate
#> ratio of variances
#> 1.12

Lastly, we implement a Levene’s test to test whether group variances are
equal when there are more than two groups. This test can be specified using
a formula and data set, as below, or by providing two vectors y, a numeric
vector, and g, a vector specifying the groups. This test is from the car package
and has slightly different output than other tests. In particular, to access the
p-value, we need to access the value named 'Pr(>F)'. In this case, we actually
do reject the null hypothesis at the 0.05 level.

levene_test <- leveneTest(y2021 ~ as.factor(county_type),
county_rates_type)

print(levene_test)
#> Levene's Test for Homogeneity of Variance (center = median)
#> Df F value Pr(>F)
#> group 2 3.41 0.034 *
#> 245
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

158 9 Hypothesis Testing

levene_test[['Pr(>F)']]
#> [1] 0.0345 NA

9.4 Two Sample Tests for Categorical Variables
In the two sample tests above, we were comparing the distributions of continu-
ous variables. We now look at comparing distributions of categorical variables.
We will first categorize counties by their abortion rate in 2020 being above
or below 11.2, which was the national average rate that year. We display the
distribution of this variable by the urban/rural grouping using a contingency
table below.

county_rates_type$below_nat_avg <-
ifelse(county_rates_type$y2020 > 11.2, "Above Nat Avg",

"Below Nat Avg")
table(county_rates_type$below_nat_avg, county_rates_type$urban)
#>
#> Rural Urban
#> Above Nat Avg 3 4
#> Below Nat Avg 185 56

We can use a Fisher’s exact test to test whether the classifications of being
above and below the national average and being rural and urban are associ-
ated with each other. In this case, the null hypothesis is that the odds or being
below the national average is equal between rural and urban counties. The
fisher.test() function can either take in a contingency table as a matrix
or can be specified by two factor vectors x and y, which is how we imple-
ment it below. Additionally, there is the option to specify the alternative
and conf.level arguments. We do not see a statistically significant difference
between urban and rural counties at the 0.05 level with the estimated odds
ratio is around 0.23.

fisher_test <- fisher.test(county_rates_type$urban,
county_rates_type$below_nat_avg)

fisher_test
#>
#> Fisher's Exact Test for Count Data
#>
#> data: county_rates_type$urban and county_rates_type$below_nat_avg

9.4 Two Sample Tests for Categorical Variables 159

#> p-value = 0.06
#> alternative hypothesis: true odds ratio is not equal to 1
#> 95 percent confidence interval:
#> 0.0325 1.3955
#> sample estimates:
#> odds ratio
#> 0.229
fisher_test$estimate
#> odds ratio
#> 0.229

An alternative test is a Pearson’s Chi-Squared test, which can be used for large
sample sizes. The counts of rural and urban counties in the ‘Above Nat Avg’
category are very small, so we recategorize our outcome to be at or above
Texas’s average to avoid this complication. The chisq.test() function also
takes in a contingency table as a matrix or can be specified by two factor
vectors x and y. Another useful argument is correct (default is TRUE) which
indicates whether to apply a continuity correction. For this test, we observe a
statistically significant difference in the proportion of counties above the na-
tional average between rural and urban counties and reject the null hypothesis
at the 0.05 level.

tex_mean <- mean(county_rates_type$y2020)
county_rates_type$below_tex_avg <-
ifelse(county_rates_type$y2020 > tex_mean, "Above Texas Ave",

"Below Texas Ave")
table(county_rates_type$below_tex_avg, county_rates_type$urban)
#>
#> Rural Urban
#> Above Texas Ave 84 39
#> Below Texas Ave 104 21

chi_sq <- chisq.test(county_rates_type$below_tex_avg,
county_rates_type$urban)

chi_sq
#>
#> Pearson's Chi-squared test with Yates' continuity correction
#>
#> data: county_rates_type$below_tex_avg and county_rates_type$urban
#> X-squared = 7, df = 1, p-value = 0.01

160 9 Hypothesis Testing

chi_sq$p.value
#> [1] 0.00953

9.4.1 Practice Question
Repeat the Chi-Squared test, but this time use the RUCC codes instead of the
urban column. You should get a p-value of 0.2799. Think about what could
explain the difference between these results.

Insert your solution here:

9.5 Adding Hypothesis Tests to Summary Tables
In Chapter 4, we used the gt and gtsummary packages to create summary
tables of variables. When creating a stratified table (done by adding the by
argument), we can automatically add p-values for hypothesis tests compar-
ing across populations using the add_p() function. By default, the add_p()
function uses a Kruskal-Wallis rank sum test for continuous variables (or a
Wilcoxon rank sum test when the by variable has two levels) and uses a Chi-
Squared Contingency Table Test for categorical variables (or a Fisher’s Exact
Test for categorical variables with any expected cell count less than five). The
chosen test(s) are displayed as footnotes.

tbl_summary(tex_itop, include = c(total_rate, white_rate, asian_rate,
hispanic_rate, black_rate,
native_american_rate),

by = "year",
statistic = list(all_continuous() ~ "{mean} ({sd})")) %>%

add_p() %>%
as_gt() #%>%

Characteristic 2016, N = 2541 2017, N = 2541 2018, N = 2541 2019, N = 2541 2020, N = 2541 2021, N = 2541 p-value2

total_rate 4.8 (3.0) 4.9 (4.9) 5.3 (4.2) 4.9 (3.3) 6.2 (14.1) 5.2 (7.9) 0.2
white_rate 4.7 (3.8) 5.1 (5.8) 5.4 (6.0) 5.1 (5.1) 6.8 (21.3) 5.5 (8.0) 0.3
asian_rate 7 (32) 12 (46) 8 (21) 7 (20) 14 (55) 7 (37) 0.066
hispanic_rate 3.9 (3.7) 4.7 (6.3) 4.6 (4.6) 4.6 (5.0) 4.6 (5.8) 4.4 (4.8) 0.7
black_rate 9 (21) 13 (65) 26 (153) 20 (80) 25 (111) 26 (121) 0.13

9.6 Exercises 161

native_american_rate 5.0 (24.0) 9.3 (65.0) 4.9 (17.8) 2.3 (12.4) 4.1 (21.1) 2.5 (10.1) 0.13

1Mean (SD)
2Kruskal-Wallis rank sum test

#gtsave(filename = "gt-summary-table.png", path =
"images/hypothesis_tests/")↪

Figure 9.1: Summary Table Stratified by Year.

We observe that a Kruskal-Wallis rank sum test was used to compare abortion
rates across year for each racial group. All of the reported p-values are above
0.05 so overall it indicates that there were not statistically significant changes
across years in the abortion rate.

9.6 Exercises
For the following exercises, we will be using the pain data from the HDSin-
Rdata package.

data(pain)

1. Determine whether the presence or absence of follow-up informa-
tion is significantly associated with the initial average pain intensity.
What do the results suggest?

2. First, plot PROMIS_PAIN_BEHAVIOR grouped by race (you can use the
PAT_RACE_CAT variable that we defined in Chapter 7. What do you
observe? Next, choose an appropriate test to determine whether this
variable differs significantly by race.

162 9 Hypothesis Testing

3. Examine the association between CCI_BIN and MEDICAID_BIN. Are
these variable significantly related to each other? How would you
describe their relationship?

4. Recreate the summary table in Figure 9.2. Then, recreate the p-
values for PROMIS_DEPRESSION, PROMIS_ANXIETY, and MEDICAID_BIN
using the appropriate tests.

Figure 9.2: Stratified Summary Table.

Part IV

Regression

10
Linear Regression

This chapter will introduce you to linear regression analysis in R. We will cover
how to fit linear regression models, check model assumptions using diagnos-
tic plots, change model formulas by adding transformations and interactions,
calculate performance metrics, and perform variable selection using stepwise
selection.

For this chapter, we will use the NHANESsample dataset seen in Chapter 4.
The sample contains lead, blood pressure, BMI, smoking status, alcohol use,
and demographic variables from NHANES 1999-2018. Variable selection and
feature engineering were conducted in an effort to replicate the regression
analyses conducted by Huang (2022). Use the help operator ?NHANESsample
to read the variable descriptions. Note that we ignore survey weights for this
analysis.

We will use the broom package (Robinson, Hayes, and Couch 2023) to present
the estimated coefficients for our regression models and the car package to
compute variance inflation factors.

library(HDSinRdata)
library(tidyverse)
library(broom)
library(car)
data(NHANESsample)

10.1 Simple Linear Regression
In Chapter 4, we presented some initial exploratory analysis for this data.
In this chapter, we will use linear regression to understand the association
between blood lead levels and systolic blood pressure, adjusting for possible
confounders. Replicating the analysis of Huang (2022), we create summary
columns for systolic and diastolic blood pressure. If an observation has one
blood pressure reading, then we use that value. If there is more than one blood

165

166 10 Linear Regression

pressure reading, then we drop the first observation and average the rest. We
do a complete case analysis by dropping any observation with NA values. This
leaves us with 30,405 observations.

NHANESsample$SBP <- apply(NHANESsample[,c("SBP1", "SBP2", "SBP3",
"SBP4")], 1,

function(x) case_when(sum(!is.na(x)) == 0 ~ NA,
sum(!is.na(x)) == 1 ~ sum(x, na.rm=TRUE),
sum(!is.na(x)) > 1 ~ mean(x[-1],

na.rm=TRUE)))
NHANESsample$DBP <- apply(NHANESsample[,c("DBP1", "DBP2", "DBP3",

"DBP4")], 1,
function(x) case_when(sum(!is.na(x)) == 0 ~ NA,

sum(!is.na(x)) == 1 ~ sum(x, na.rm=TRUE),
sum(!is.na(x)) > 1 ~ mean(x[-1],

na.rm=TRUE)))
nhanes_df <- na.omit(subset(NHANESsample,

select= -c(SBP1, SBP2, SBP3, SBP4, DBP1,
DBP2, DBP3, DBP4)))

dim(nhanes_df)
#> [1] 30405 15

Next, we make sure any categorical variables are coded as factors.

nhanes_df$SEX <- as.factor(nhanes_df$SEX)
nhanes_df$RACE <- as.factor(nhanes_df$RACE)
nhanes_df$EDUCATION <- as.factor(nhanes_df$EDUCATION)
nhanes_df$BMI_CAT <- as.factor(nhanes_df$BMI_CAT)
nhanes_df$LEAD_QUANTILE <- as.factor(nhanes_df$LEAD_QUANTILE)

We will start with simple linear regression. Below, we plot the relationship
between blood lead level and systolic blood pressure. For a simple linear re-
gression scenario with a single continuous independent variable, a scatter plot
allows us to easily visualize whether we meet the assumptions underlying linear
regression. The survey sampling for the NHANES survey allows us to assume
that each observation is independent. Looking at the plots below, we expect to
see that the average systolic blood pressure increases linearly with blood lead
level and that the observations look normally distributed with equal variance
along that line. Below, we do not observe that to be the case. We will come
back to this in the section on transformations and interactions.

plot(nhanes_df$LEAD, nhanes_df$SBP,

10.1 Simple Linear Regression 167

xlab = "Blood Lead Level", ylab = "Systolic Blood Pressure",
pch=16)

0 10 20 30 40 50 60

10
0

20
0

Blood Lead Level

S
ys

to
lic

 B
lo

od
 P

re
ss

ur
e

Despite our observations above, we will continue by fiting a simple linear
regression model to explain the association between SBP and LEAD. The function
lm(formula = y ~ x, data) fits a linear model in R. The first argument is the
formula of the linear model: on the left hand side of the ~ we put the outcome
variable, and on the right hand side we put the independent variable. When we
have multiple indepedent variables we separate them with a + (e.g. y~x1+x2).
The output of this function is an lm object.

We can call the summary() function on this object to print a summary of
the model, which includes the estimated coefficients, information about the
residuals, the R-squared and adjusted R-squared values, and the F-statistic.
Recall, that we previously used the summary() function to get summary statis-
tics about a vector. This is an example of how multiple functions can have
the same name. R figues out which summary() function to use by identifying
that the argument we passed in is a lm object.

simp_model <- lm(formula = SBP~LEAD, data = nhanes_df)
summary(simp_model)
#>
#> Call:
#> lm(formula = SBP ~ LEAD, data = nhanes_df)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -96.36 -12.52 -2.79 9.36 140.88
#>

168 10 Linear Regression

#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 120.665 0.149 807.1 <2e-16 ***
#> LEAD 1.708 0.058 29.4 <2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 18.5 on 30403 degrees of freedom
#> Multiple R-squared: 0.0277, Adjusted R-squared: 0.0277
#> F-statistic: 867 on 1 and 30403 DF, p-value: <2e-16

To visualize this model, we can add the estimated regression line to our scatter
plot from above. In ggplot2, this can be done with the geom_smooth() function.
In base R, we use the abline() function, which can take in a regression model
as an input. We can see that the estimated regression line does not fit our
data very well.

plot(nhanes_df$LEAD, nhanes_df$SBP,
ylab=c("Systolic Blood Pressure"),
xlab=c("Blood Lead Level"), pch=16)

abline(simp_model, col=2, lwd=2)

0 10 20 30 40 50 60

10
0

20
0

Blood Lead Level

S
ys

to
lic

 B
lo

od
 P

re
ss

ur
e

10.1.1 Practice Question
Fit a simple linear regression model with SBP as the outcome and AGE as the in-
dependent variable. The estimated coefficient for AGE should be 0.47693. Then,
plot these two variables against each other and add the estimated regression

10.2 Multiple Linear Regression 169

line to the plot, as we did above. You should see that this regression has a
better fit than the previous one.

Insert your solution here:

10.2 Multiple Linear Regression
We now create a model that is similar to the previous one except that it also
adjusts for age and sex. To add these variables into the model, we have to
specify a new formula. Below, we fit this model and then print a summary,
again using the summary() function.

adj_model <- lm(SBP ~ LEAD + AGE + SEX, data = nhanes_df)
summary(adj_model)
#>
#> Call:
#> lm(formula = SBP ~ LEAD + AGE + SEX, data = nhanes_df)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -65.62 -10.59 -1.55 8.55 131.60
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 101.78541 0.30353 335.34 < 2e-16 ***
#> LEAD 0.40007 0.05525 7.24 4.5e-13 ***
#> AGE 0.46193 0.00557 82.97 < 2e-16 ***
#> SEXFemale -2.77774 0.19567 -14.20 < 2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 16.6 on 30401 degrees of freedom
#> Multiple R-squared: 0.212, Adjusted R-squared: 0.212
#> F-statistic: 2.72e+03 on 3 and 30401 DF, p-value: <2e-16

We can also extract the estimated regression coefficients from the model using
the coef() function or by using the tidy() function from the broom package.
This function puts the coefficient estimates, standard errors, statistics, and
p-values in a data frame. We can also add a confidence interval by specifying

170 10 Linear Regression

conf.int = TRUE. Below, we add a 95% confidence interval (which is the default
value for conf.level).

coef(adj_model)
#> (Intercept) LEAD AGE SEXFemale
#> 101.785 0.400 0.462 -2.778

tidy(adj_model, conf.int=TRUE, conf.level=0.95)
#> # A tibble: 4 x 7
#> term estimate std.error statistic p.value conf.low

conf.high↪

#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 (Intercept) 102. 0.304 335. 0 101. 102.
#> 2 LEAD 0.400 0.0552 7.24 4.54e-13 0.292 0.508
#> 3 AGE 0.462 0.00557 83.0 0 0.451 0.473
#> 4 SEXFemale -2.78 0.196 -14.2 1.36e-45 -3.16 -2.39

Some other useful summary functions are resid(), which returns the resid-
ual values for the model, and fitted(), which returns the fitted values or
estimated y values. We can also predict on new data using the predict() func-
tion. Below we look at the distribution of the residual values and then plot the
fitted vs. true values. We observe some extreme residual values as well as the
fact that the absolute residual values increase with increased blood pressure
values.

summary(resid(adj_model))
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> -65.6 -10.6 -1.6 0.0 8.5 131.6

plot(nhanes_df$SBP, fitted(adj_model),
xlab ="True Systolic Blood Pressure",
ylab="Predicted Systolic Blood Pressure", pch=16)

abline(a=0, b=1, col="red", lwd=2)

10.2 Multiple Linear Regression 171

100 150 200 250

11
0

13
0

15
0

True Systolic Blood Pressure

P
re

di
ct

ed
 S

ys
to

lic
 B

lo
od

 P
re

ss
ur

e

We can next perform a nested hypothesis test between our simple linear regre-
sion model and our adjusted model using the anova() function. We pass both
models to this function along with the argument test="F" to indicate that we
are performing an F-test. The print() function shows the two tested models
along with the associated p-value, which indicates a significantly better fit for
the adjusted model.

print(anova(simp_model, adj_model, test="F"))
#> Analysis of Variance Table
#>
#> Model 1: SBP ~ LEAD
#> Model 2: SBP ~ LEAD + AGE + SEX
#> Res.Df RSS Df Sum of Sq F Pr(>F)
#> 1 30403 10375769
#> 2 30401 8413303 2 1962467 3546 <2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The model summary for the adjusted model displays the estimated coefficient
for sex as SEXFemale, which indicates that the reference level for sex is male.
If we want to change our reference level, we can reorder the factor variable
either by using the factor() function and specifying Female as the first level or
by using the relevel() function. The ref argument in the relevel() function
specifies the new reference level. Now, when we run the model, we can see
that the estimated coefficient for sex is labeled as SEXMale.

172 10 Linear Regression

nhanes_df$SEX <- relevel(nhanes_df$SEX, ref="Female")
adj_model2 <- lm(SBP ~ LEAD + AGE + SEX, data = nhanes_df)
tidy(adj_model2)
#> # A tibble: 4 x 5
#> term estimate std.error statistic p.value
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 (Intercept) 99.0 0.293 338. 0
#> 2 LEAD 0.400 0.0552 7.24 4.54e-13
#> 3 AGE 0.462 0.00557 83.0 0
#> 4 SEXMale 2.78 0.196 14.2 1.36e-45

The formula passed to the lm() function also allows us to use the . to indicate
that we would like to include all remaining columns as independent variables
or the - to exclude variables. Below, we show how we could use these to fit
a model with LEAD, AGE, and SEX as included covariates by excluding all other
variables instead of by specifying these three variables themselves.

lm(SBP ~ . - ID - RACE - EDUCATION - INCOME - SMOKE - YEAR - BMI_CAT -
LEAD_QUANTILE - DBP - ALC - HYP - RACE, data = nhanes_df)

#>
#> Call:
#> lm(formula = SBP ~ . - ID - RACE - EDUCATION - INCOME - SMOKE -
#> YEAR - BMI_CAT - LEAD_QUANTILE - DBP - ALC - HYP - RACE,
#> data = nhanes_df)
#>
#> Coefficients:
#> (Intercept) AGE SEXMale LEAD
#> 99.008 0.462 2.778 0.400

10.3 Diagnostic Plots and Measures
We can tell from the above plot that our model doesn’t have a great fit. We
will use some further diagnostic plots and measures to learn more. R has some
built-in plots available for linear regression models, which can be displayed
using the plot() function. Similar the summary() function, this function acts
differently when passed an lm object. The four plots include (a) Residuals
vs. Fitted, (b) a QQ-plot for the residuals, (c) Standardized residuals (sqrt)
vs. Fitted, and (d) Standardized Residuals vs. Leverage. In the last plot, you
may observe that there is a dashed line. Any points outside of these lines

10.3 Diagnostic Plots and Measures 173

have a Cook’s distance of greater than 0.5. Additionally, points with labels
correspond to the points with the largest residuals, so this last plot summarizes
the outliers, leverage, and influential points. The plots below show that our
residuals do not look normally distributed and that we have may have some
high leverage points.

par(mfrow=c(2,2)) # plots all four plots together
plot(adj_model)

110 120 130 140 150

−
50

0
50

10
0

15
0

Fitted values

R
es

id
ua

ls

Residuals vs Fitted

10958
9592

6436

−4 −2 0 2 4

−
4

−
2

0
2

4
6

8

Theoretical Quantiles

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Q−Q Residuals

10958
9592

6436

110 120 130 140 150

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Fitted values

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Scale−Location
10958

9592
6436

0.00 0.01 0.02 0.03 0.04

−
4

0
2

4
6

8

Leverage

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Cook's distance

0.5

Residuals vs Leverage

3661

23016
15321

174 10 Linear Regression

10.3.1 Normality
Beyond the default plots, we can also plot a histogram of the residuals and a
qq-plot. The qqnorm() and qqline() functions can take in the residuals from
our model as an argument. The latter adds the theoretical red line for reference.
As both the histogram and qq-plot shown, the residuals are positively skewed,
and thus the assumption of normality is not satisfied for our residuals. Later
in this chapter, we will discuss how we might transform this dataset and/or
model to satisfy this assumption.

par(mfrow=c(1,2)) # plot next to each other
hist(resid(adj_model), xlab="Residuals",

main="Histogram of Residuals")
qqnorm(resid(adj_model))
qqline(resid(adj_model),col="red")

Histogram of Residuals

Residuals

F
re

qu
en

cy

−50 0 50 100

0
40

00
80

00

−4 −2 0 2 4

−
50

0
50

10
0

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

Instead of using the direct residuals, we can create the plots above using
the standardized residuals with the function rstandard(). The standardized
residuals are the raw residuals divided by an estimate of the standard deviation
for the residual, which will be different for each observation.

par(mfrow=c(1,2))
hist(rstandard(adj_model), xlab="Standardized Residuals",

main="Histogram of Standardized Residuals", cex.main=0.75)
qqnorm(rstandard(adj_model), cex.main=0.75)
qqline(rstandard(adj_model),col="red")

10.3 Diagnostic Plots and Measures 175

Histogram of Standardized Residuals

Standardized Residuals

F
re

qu
en

cy

−4 0 2 4 6 8

0
40

00
10

00
0

−4 −2 0 2 4

−
4

0
2

4
6

8

Normal Q−Q Plot

Theoretical Quantiles
S

am
pl

e
Q

ua
nt

ile
s

10.3.2 Homoscedasticity, Linearity, and Collinearity
We can also create a residual vs. fitted plot or plot the residuals against in-
cluded covariates. Below, we plot the blood lead level against the residuals. In
both plots, we are looking for the points to be spread roughly evenly around
0 with no discerning pattern. However, both plots shows a tunnel shape, in-
dicating a growing and shrinking variance of residuals by level, respectively.
This indicates that we are violating the homoscedasticity assumption.

par(mfrow=c(1,2))
plot(fitted(adj_model), resid(adj_model), xlab="Fitted Values",

ylab="Residuals")
plot(nhanes_df$LEAD, resid(adj_model), xlab="Blood Lead Level",

ylab="Residuals")

176 10 Linear Regression

110 130 150

−
50

0
50

10
0

Fitted Values

R
es

id
ua

ls

0 20 40 60

−
50

0
50

10
0

Blood Lead Level

R
es

id
ua

ls

To quantify any collinearity between the included covariates, we can calculate
the variance inflation factors. The vif() function in the car package allows
us to calculate the variance inflation factors or generalized variance inflation
factors for all covariates. In our case, all the VIF values are around 1, indicating
low levels of collinearity.

vif(adj_model)
#> LEAD AGE SEX
#> 1.12 1.07 1.05

10.3.3 Practice Question
Fit a linear regression model with SBP as the outcome and with INCOME, RACE,
EDUCATION, and ALC as independent variables. Then, plot the residuals vs. the
fitted values as well and make a QQ plot for the standardized residuals from
this model. They should look like Figure 10.1.

Insert your solution here:

10.3.4 Leverage and Influence
We may also be interested in how each observation is influencing the model.
Leverage values measure how much an individual observation’s 𝑦 value influ-
ences its own predicted value and indicate whether observations have extreme
predictor values compared to the rest of the data. Leverage values range from
0 to 1 and sum to the number of estimated coefficients. Observations with
high leverage have the potential to significantly impact the estimated regres-
sion coefficients and the overall fit of the model. Therefore, examining leverage

10.3 Diagnostic Plots and Measures 177

Figure 10.1: Residual Plots.

values helps identify observations that may be influential or outliers. Below
we find the ten highest leverage values and then find those observations in the
data.

sort(hatvalues(adj_model), decreasing=TRUE)[1:10]
#> 23016 2511 3091 21891 3661 511 21892 15321

6511↪

#> 0.03899 0.02936 0.02270 0.01484 0.01443 0.01399 0.01159 0.01080
0.01022↪

#> 3452
#> 0.00968
nhanes_df[order(hatvalues(adj_model), decreasing=TRUE),] %>%
select(c(SBP, LEAD, AGE, SEX)) %>% head(10)

#> SBP LEAD AGE SEX
#> 23016 129 61.3 38 Male
#> 2511 139 54.0 61 Male
#> 3091 154 48.0 72 Male
#> 21891 123 38.9 54 Male
#> 3661 101 38.0 39 Male

178 10 Linear Regression

#> 511 118 37.3 34 Male
#> 21892 107 33.7 21 Male
#> 15321 104 33.1 39 Male
#> 6511 175 33.0 71 Male
#> 3452 113 31.4 38 Male

Some other measures of influence are the DFBETAs and Cook’s distance,
which measure how much each observation influences the estimated coefficients
and the estimated y values, respectively. The influence.measures() function
provides a set of measures that quantify the influence of each observation on a
linear regression model: these include the DFBETAS for each model variable,
DFFITS, covariance ratios, Cook’s distances, and the leverage values. The
output returns the values in a matrix called infmat, which we convert to a
data frame below.

inf_mat <- influence.measures(adj_model)[['infmat']]
as.data.frame(inf_mat) %>% head()
#> dfb.1_ dfb.LEAD dfb.AGE dfb.SEXF dffit cov.r cook.d
#> 1 0.013880 -0.017564 -1.68e-02 0.008319 -0.03427 1.000 2.93e-04
#> 2 -0.000732 0.000348 -3.92e-05 0.001051 -0.00150 1.000 5.59e-07
#> 3 0.022137 0.005749 -1.45e-02 -0.016843 0.02964 0.999 2.19e-04
#> 4 0.000499 0.001043 -2.07e-03 0.001631 -0.00312 1.000 2.43e-06
#> 5 0.002259 -0.002725 -2.50e-03 0.000973 -0.00498 1.000 6.20e-06
#> 6 -0.001283 -0.000559 1.65e-03 -0.002929 -0.00441 1.000 4.87e-06
#> hat
#> 1 1.90e-04
#> 2 6.61e-05
#> 3 8.28e-05
#> 4 1.18e-04
#> 5 2.35e-04
#> 6 8.09e-05

10.4 Interactions and Transformations
We now try to improve our model. To start, we look at potential transfor-
mations for our outcome variable. We will consider a log transformation for
both our outcome, systolic blood pressure, and our predictor of interest, blood
lead level. Both of these variables have a fairly skewed distribution and may

10.4 Interactions and Transformations 179

benefit from such a transformation. Below, you can see that the transformed
variables have distributions that are more symmetrical.

par(mfrow=c(2,2))
hist(nhanes_df$SBP, xlab="Systolic Blood Pressure", main="")
hist(log(nhanes_df$SBP), xlab="Log Systolic Blood Pressure", main="")
hist(nhanes_df$LEAD, xlab="Blood Lead Level", main="")
hist(log(nhanes_df$LEAD), xlab="Log Blood Lead Level", main="")

Systolic Blood Pressure

F
re

qu
en

cy

100 150 200 250

0
20

00
60

00

Log Systolic Blood Pressure

F
re

qu
en

cy

4.5 5.0 5.5

0
40

00
80

00

Blood Lead Level

F
re

qu
en

cy

0 10 20 30 40 50 60

0
10

00
0

25
00

0

Log Blood Lead Level

F
re

qu
en

cy

−2 0 2 4

0
20

00
60

00

To add a transformation to a model, we can simply apply the transformation
in the formula for lm(). We will calculate the adjusted R-squared for each
potential model to compare their fits in addition to plotting the four qq-plots.
Both indicate that the model with the log-log transformation (that is, with
a log transformation applied to both the SBP and the LEAD variables) is the
best fit though the model with just a log transformation for SBP has a similar
qq-plot.

180 10 Linear Regression

model_nlog_nlog <- lm(SBP ~ LEAD + AGE + SEX, data = nhanes_df)
model_log_nlog <- lm(log(SBP) ~ LEAD + AGE + SEX, data = nhanes_df)
model_nlog_log <- lm(SBP ~ log(LEAD) + AGE + SEX, data = nhanes_df)
model_log_log <- lm(log(SBP) ~ log(LEAD) + AGE + SEX,

data = nhanes_df)

summary(model_nlog_nlog)$adj.r.squared
#> [1] 0.212
summary(model_log_nlog)$adj.r.squared
#> [1] 0.215
summary(model_nlog_log)$adj.r.squared
#> [1] 0.212
summary(model_log_log)$adj.r.squared
#> [1] 0.215

par(mfrow=c(2,2))
qqnorm(rstandard(model_nlog_nlog), main="Original Model")
qqline(rstandard(model_nlog_nlog),col="red")
qqnorm(rstandard(model_log_nlog), main="Log SBP")
qqline(rstandard(model_log_nlog),col="red")
qqnorm(rstandard(model_nlog_log), main="Log Lead")
qqline(rstandard(model_nlog_log),col="red")
qqnorm(rstandard(model_log_log), main="Log SBP, Log Lead")
qqline(rstandard(model_log_log),col="red")

10.4 Interactions and Transformations 181

−4 −2 0 2 4

−
4

−
2

0
2

4
6

8

Original Model

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

−4 −2 0 2 4

−
4

−
2

0
2

4

Log SBP

Theoretical Quantiles
S

am
pl

e
Q

ua
nt

ile
s

−4 −2 0 2 4

−
4

−
2

0
2

4
6

8

Log Lead

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

−4 −2 0 2 4

−
4

−
2

0
2

4

Log SBP, Log Lead

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

10.4.1 Practice Question
Instead of adding in a log transformation for LEAD like we did above, try a
square root transformation sqrt(LEAD) and an inverse transformation 1/LEAD
while keeping the log transformation for the outcome log(SBP). Which model
fits better according to the adjusted R-squared? The resulting QQ plots should
look like Figure 10.2.

182 10 Linear Regression

Figure 10.2: QQ Plots for Possible Transformations.

Insert your solution here:

Additionally, we might consider polynomial transformations. The poly(x, de-
gree=1) function allows us to specify a polynomial transformation where we
might have higher degree terms. We do not pursue this for this particular
example, but we show some example code below for creating such a transfor-
mation (in this case, a cubic transformation for blood lead level).

model_poly <- lm(SBP ~ poly(LEAD, 3) + AGE + SEX, data = nhanes_df)

We can summarize the outcome for our log-log model using the tidy() function
again. We observe small p-values for each estimated coefficient.

tidy(model_log_log)
#> # A tibble: 4 x 5
#> term estimate std.error statistic p.value
#> <chr> <dbl> <dbl> <dbl> <dbl>

10.4 Interactions and Transformations 183

#> 1 (Intercept) 4.62 0.00239 1932. 0
#> 2 log(LEAD) 0.00891 0.00118 7.53 5.34e-14
#> 3 AGE 0.00349 0.0000457 76.4 0
#> 4 SEXMale 0.0254 0.00155 16.4 2.06e-60

Another component that we may want to add to our model is an interaction
term. For example, we may consider an interaction between sex and blood
lead level. We add an interaction to the formula using a : between the two
variables. The output below shows that the coefficient for this interaction is
indeed significant.

model_interaction <- lm(log(SBP) ~ log(LEAD) + AGE + SEX +
SEX:log(LEAD), data=nhanes_df)

summary(model_interaction)
#>
#> Call:
#> lm(formula = log(SBP) ~ log(LEAD) + AGE + SEX + SEX:log(LEAD),
#> data = nhanes_df)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -0.6981 -0.0816 -0.0049 0.0752 0.6599
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 4.62e+00 2.39e-03 1936.2 <2e-16 ***
#> log(LEAD) 2.36e-02 1.68e-03 14.1 <2e-16 ***
#> AGE 3.45e-03 4.58e-05 75.3 <2e-16 ***
#> SEXMale 3.32e-02 1.67e-03 19.9 <2e-16 ***
#> log(LEAD):SEXMale -2.66e-02 2.16e-03 -12.3 <2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 0.128 on 30400 degrees of freedom
#> Multiple R-squared: 0.219, Adjusted R-squared: 0.219
#> F-statistic: 2.13e+03 on 4 and 30400 DF, p-value: <2e-16

184 10 Linear Regression

10.5 Evaluation Metrics
Besides the adjusted R-squared, there are a few other metrics that can help
us to understand how well our model fits the data and to help with model
selection. The AIC() and BIC() functions find the Akaike information criterion
(AIC) and Bayesian information criterion (BIC) values, respectively. Both AIC
and BIC balance the trade-off between model complexity and goodness of fit.
AIC takes into account both the goodness of fit (captured by the likelihood
of the model) and the complexity of the model (captured by the number of
parameters used). Lower AIC values are preferable. BIC is similar to AIC but
has a stronger penalty for model complexity compared to AIC. Both measures
indicate a preference for keeping the interaction term.

AIC(model_log_log)
#> [1] -38610
AIC(model_interaction)
#> [1] -38760

BIC(model_log_log)
#> [1] -38569
BIC(model_interaction)
#> [1] -38710

The predict() function allows us to calculate the predicted y values. When
called on a model with no data specified, it returns the predicted values for
the training data. We could also specify new data using the newdata argument.
The new data provided must contain the columns given in the model formula.
Below, we use the predict() function to find the predicted values from our
model and then calculate the mean absolute error (MAE) and mean squared
error (MSE) for our model. MAE is less sensitive to outliers compared to MSE.
The mean absolute error indicates that our model has fairly high residuals
on average. While this model may be helpful to understand the relationship
between blood lead level and systolic blood pressure, it would not be very
useful as a tool to predict the latter.

pred_y <- predict(model_interaction)

mae <- mean(abs(nhanes_df$SBP - pred_y))

10.6 Stepwise Selection 185

mae
#> [1] 119

mse <- mean((nhanes_df$SBP- pred_y)^2)
mse
#> [1] 14502

10.6 Stepwise Selection
So far we have ignored the other variables in the data frame. When performing
variable selection, there are multiple methods to use. We will end this chapter
by demonstrating how to implement one such method, stepwise selection, in
R. The step() function takes in an initial model to perform stepwise selection
on along with a direction direction (“forward”, “backward”, or “both”), and
a scope scope. The scope specifies the lower and upper model formulas to
consider. Below, we use forward selection so the lower formula is the formula
for our current model and the upper formula contains the other covariates we
are considering adding in. These two formulas must be nested - that is, all
terms in the lower formula must be contained in the upper formula.

By default, the step() function prints each step in the process and uses AIC to
guide its decisions. We can set trace=0 to avoid the print behavior and update
the argument k to log(n) to use BIC, where n is the number of observations.
Below we see that the algorithm first adds in race, then BMI, then income,
then education, and then smoking status. In fact, all variables were added to
the model! The final output is an lm object that we can use just like the ones
earlier in this chapter. We get the summary of the final model and see that
the adjusted R-squared has improved to 0.2479.

lower_formula <- "log(SBP) ~ log(LEAD) + AGE + SEX:log(LEAD)"
upper_formula <- "log(SBP) ~ log(LEAD) + AGE + SEX:log(LEAD) + SEX +
RACE + EDUCATION + SMOKE + INCOME + BMI_CAT"

mod_step <- step(model_interaction, direction = 'forward',
scope = list(lower = lower_formula,

upper = upper_formula))
#> Start: AIC=-125048
#> log(SBP) ~ log(LEAD) + AGE + SEX + SEX:log(LEAD)
#>
#> Df Sum of Sq RSS AIC

186 10 Linear Regression

#> + RACE 4 9.16 488 -125605
#> + BMI_CAT 2 8.97 488 -125597
#> + INCOME 1 2.87 494 -125222
#> + EDUCATION 2 1.90 495 -125160
#> + SMOKE 2 0.35 497 -125065
#> <none> 497 -125048
#>
#> Step: AIC=-125605
#> log(SBP) ~ log(LEAD) + AGE + SEX + RACE + log(LEAD):SEX
#>
#> Df Sum of Sq RSS AIC
#> + BMI_CAT 2 7.16 481 -126050
#> + INCOME 1 1.80 486 -125715
#> + EDUCATION 2 1.34 487 -125684
#> + SMOKE 2 0.13 488 -125609
#> <none> 488 -125605
#>
#> Step: AIC=-126050
#> log(SBP) ~ log(LEAD) + AGE + SEX + RACE + BMI_CAT + log(LEAD):SEX
#>
#> Df Sum of Sq RSS AIC
#> + INCOME 1 1.617 479 -126151
#> + EDUCATION 2 1.112 480 -126117
#> + SMOKE 2 0.261 481 -126063
#> <none> 481 -126050
#>
#> Step: AIC=-126151
#> log(SBP) ~ log(LEAD) + AGE + SEX + RACE + BMI_CAT + INCOME +
#> log(LEAD):SEX
#>
#> Df Sum of Sq RSS AIC
#> + EDUCATION 2 0.418 479 -126173
#> + SMOKE 2 0.258 479 -126163
#> <none> 479 -126151
#>
#> Step: AIC=-126173
#> log(SBP) ~ log(LEAD) + AGE + SEX + RACE + BMI_CAT + INCOME +
#> EDUCATION + log(LEAD):SEX
#>
#> Df Sum of Sq RSS AIC
#> + SMOKE 2 0.286 479 -126187
#> <none> 479 -126173
#>

10.6 Stepwise Selection 187

#> Step: AIC=-126187
#> log(SBP) ~ log(LEAD) + AGE + SEX + RACE + BMI_CAT + INCOME +
#> EDUCATION + SMOKE + log(LEAD):SEX

summary(mod_step)
#>
#> Call:
#> lm(formula = log(SBP) ~ log(LEAD) + AGE + SEX + RACE + BMI_CAT +
#> INCOME + EDUCATION + SMOKE + log(LEAD):SEX, data = nhanes_df)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -0.6713 -0.0799 -0.0039 0.0738 0.6797
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 4.61e+00 3.32e-03 1391.51 < 2e-16 ***
#> log(LEAD) 2.28e-02 1.69e-03 13.47 < 2e-16 ***
#> AGE 3.48e-03 4.85e-05 71.87 < 2e-16 ***
#> SEXMale 3.47e-02 1.65e-03 20.94 < 2e-16 ***
#> RACEOther Hispanic -7.11e-03 3.22e-03 -2.20 0.027 *
#> RACENon-Hispanic White -4.45e-03 2.20e-03 -2.02 0.043 *
#> RACENon-Hispanic Black 3.37e-02 2.47e-03 13.66 < 2e-16 ***
#> RACEOther Race 6.27e-03 3.39e-03 1.85 0.064 .
#> BMI_CAT25<BMI<30 1.51e-02 1.84e-03 8.23 < 2e-16 ***
#> BMI_CATBMI>=30 3.78e-02 1.83e-03 20.62 < 2e-16 ***
#> INCOME -3.89e-03 5.00e-04 -7.78 7.6e-15 ***
#> EDUCATIONHS -1.94e-05 2.19e-03 -0.01 0.993
#> EDUCATIONMoreThanHS -8.69e-03 2.07e-03 -4.20 2.6e-05 ***
#> SMOKEQuitSmoke -7.56e-03 1.80e-03 -4.21 2.6e-05 ***
#> SMOKEStillSmoke -4.04e-03 1.94e-03 -2.08 0.038 *
#> log(LEAD):SEXMale -2.61e-02 2.12e-03 -12.28 < 2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 0.126 on 30389 degrees of freedom
#> Multiple R-squared: 0.248, Adjusted R-squared: 0.248
#> F-statistic: 669 on 15 and 30389 DF, p-value: <2e-16

188 10 Linear Regression

10.7 Exercises
For these exercises, we will continue using the nhanes_df data.

1. Construct a linear model using DBP as the output and LEAD, AGE, and
EVER_SMOKE as features, and print the output.

2. Use forward stepwise selection to add possible interactions to the
linear model from the previous question.

3. Draw a QQ plot for the model in Question 2, and describe the
distribution that you observe.

4. Report the MAE and MSE of the model developed in Question
2. Then, find the row numbers of the observations with the top 5
Cook’s Distance values for this model.

5. Look at some diagnostic plots for the model and use what you ob-
serve from these plots to choose a transformation that will improve
the fit of this model. Then, fit and summarize this new model with
the transformation included. How do the MSE and MAE of the new
model compare to the previous one? Note that your predictions will
be on the transformed scale so you’ll need to convert them to the
correct scale.

11
Logistic Regression

This chapter will build on the last and continue with regression analysis in R.
Specifically, we will cover binary logistic regression using the glm() function,
which can be used to fit generalized linear models. Many of the functions
learned in the last chapter can also be used with a glm object. For example,
the glm() function expects a formula in the same way as the lm() function.
We will also cover diagnostic plots and model evaluation specific to a binary
outcome.

The data used in this chapter is from the 2021 National Youth Tobacco Sur-
vey (NYTS) (Centers for Disease Control and Prevention (CDC) 2021). This
dataset contains 20,413 participants and a set of variables relating to demo-
graphic information, frequency of tobacco use, and methods of obtaining said
tobacco as reported by students on the 2021 NYTS. We will use logistic regres-
sion to examine whether survey setting was associated with youth reporting of
current tobacco use similar to the analysis presented in Park-Lee et al. (2023).
Note that we ignore survey weights for this analysis.

We will use the broom package again to present the estimated coefficients,
the tidyverse package to create a calibration plots, the lmtest (Hothorn et
al. 2022) package to perform likelihood ratio tests, and the pROC package
(Robin et al. 2023) to create receiver operating characteristic curves.

library(broom)
library(tidyverse)
library(pROC)
library(lmtest)
library(HDSinRdata)
data(nyts)

189

190 11 Logistic Regression

11.1 Generalized Linear Models in R
The glm(formula, data, family) function in R is used to fit generalized linear
models. The three main arguments we must specify to the function are the

• formula - specifies the relationship between the independent variables and
the outcome of interest,

• data - the dataset used to train the model, and

• family - a description of the error distribution and link function to be used
in the model.

In binary logistic regression, we assume a binomial outcome and use the logit
link function. We can specify this by setting family = binomial. By default,
this will assume the link function is the logit function. Note that we can even
use the glm() function to implement linear regression by setting family =
gaussian. Using our example from Chapter 10, running glm(SBP ~ LEAD, data
= nhanes_df, family = gaussian) would be equivalent to lm(SBP ~ LEAD, data
= nhanes_df).

Our outcome of interest will be current e-cigarette use, e_cig_use, so we need
to create this variable from the variables that are currently in the data. We
set e_cig_use to 0 if the respondent answered that they have not used e-
cigarettes in the last 30 days and 1 otherwise. We can see that there are only
1,435 respondents who reported e-cigarette use. This is a low percentage of
the overall sample, which will likely impact our results.

nyts$e_cig_use <- as.factor(ifelse(nyts$num_e_cigs==0, "0", "1"))
table(nyts$e_cig_use)
#>
#> 0 1
#> 18683 1435

Looking at the covariate of interest, survey setting, we can see that there are 85
respondents that took the survey in “Some other place”. Since we are interested
in the impact of taking the survey at school compared to other settings, we
will simplify this variable to have two levels: “school” and “home/other”.

table(nyts$location)
#>
#> At home (virtual learning) In a school building/classroom
#> 8738 10737

11.1 Generalized Linear Models in R 191

#> Some other place
#> 85
nyts$location <- ifelse(nyts$location ==

"In a school building/classroom",
"school", "home/other")

nyts$location <- as.factor(nyts$location)

To start, we will create a model to predict e-cigarette use from school setting
adjusting for the covariates sex, school level, and race and ethnicity. Note
that we specify our formula and data as with the lm() function. We then use
the summary() function again to print a summary of this fitted model. The
output is slightly different from an lm object. We can see the null and residual
deviances are reported along with the AIC. Adding transformations and in-
teractions is equivalent to that in the lm() function and is not demonstrated
in this chapter.

mod_start <- glm(e_cig_use ~ grade + sex + race_and_ethnicity +
location, data = nyts, family = binomial)

summary(mod_start)
#>
#> Call:
#> glm(formula = e_cig_use ~ grade + sex + race_and_ethnicity +
#> location, family = binomial, data = nyts)
#>
#> Coefficients:
#> Estimate Std. Error z value
#> (Intercept) -4.6017 0.1539 -29.91
#> grade7th 0.4461 0.1753 2.54
#> grade8th 0.9677 0.1607 6.02
#> grade9th 1.3830 0.1549 8.93
#> grade10th 1.9183 0.1513 12.68
#> grade11th 2.1385 0.1491 14.34
#> grade12th 2.4286 0.1492 16.28
#> gradeUngraded or Other Grade 2.5213 0.4487 5.62
#> sexFemale 0.1922 0.0580 3.32
#> race_and_ethnicitynon-Hispanic Black -0.6614 0.1121 -5.90
#> race_and_ethnicitynon-Hispanic other race -0.1021 0.1515

-0.67↪

#> race_and_ethnicitynon-Hispanic White 0.1983 0.0739 2.68
#> locationschool 0.7223 0.0648 11.14
#> Pr(>|z|)
#> (Intercept) < 2e-16 ***
#> grade7th 0.01095 *

192 11 Logistic Regression

#> grade8th 1.7e-09 ***
#> grade9th < 2e-16 ***
#> grade10th < 2e-16 ***
#> grade11th < 2e-16 ***
#> grade12th < 2e-16 ***
#> gradeUngraded or Other Grade 1.9e-08 ***
#> sexFemale 0.00091 ***
#> race_and_ethnicitynon-Hispanic Black 3.6e-09 ***
#> race_and_ethnicitynon-Hispanic other race 0.50061
#> race_and_ethnicitynon-Hispanic White 0.00726 **
#> locationschool < 2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> (Dispersion parameter for binomial family taken to be 1)
#>
#> Null deviance: 9754.9 on 18746 degrees of freedom
#> Residual deviance: 8886.8 on 18734 degrees of freedom
#> (1666 observations deleted due to missingness)
#> AIC: 8913
#>
#> Number of Fisher Scoring iterations: 6

We can use the tidy() function from the broom package to display the esti-
mated coefficients from the above model. This time we add the exponentiate
= TRUE argument to exponentiate our coefficients so we can interpret them as
estimated change in odds rather than log odds. For example, we can see below
that those who answered at school have double the estimated odds of report-
ing e-cigarette use compared to those who took the survey at home/other,
adjusting for grade, sex, and race and ethnicity.

tidy(mod_start, exponentiate=TRUE)
#> # A tibble: 13 x 5
#> term estimate std.error statistic p.value
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 (Intercept) 0.0100 0.154 -29.9 1.68e-196
#> 2 grade7th 1.56 0.175 2.54 1.10e- 2
#> 3 grade8th 2.63 0.161 6.02 1.73e- 9
#> 4 grade9th 3.99 0.155 8.93 4.41e- 19
#> 5 grade10th 6.81 0.151 12.7 7.94e- 37
#> # i 8 more rows

11.2 Residuals, Discrimination, and Calibration 193

11.1.1 Practice Question
Fit a logistic regression model with cigarette use as the outcome and age,
race_and_ethnicity, LGBT, and family_affluence as well as an interaction
between family_affluence and race_and_ethnicity as independent variables.
Your AIC should be 2430.8.

Insert your solution here:

11.2 Residuals, Discrimination, and Calibration
Next, we look at the distribution of the residuals. The resid() function can
be used to find the residuals again, but this time we might want to specify
the Pearson and deviance residuals by specifying the type argument. We plot
histograms for both of these residual types below. In both plots, we can observe
a multi-modal distribution, which reflects the binary nature of our outcome.

par(mfrow=c(1,2))
hist(resid(mod_start, type="pearson"), main = "Pearson Residuals")
hist(resid(mod_start, type="deviance"), main = "Deviance Residuals")

Pearson Residuals

resid(mod_start, type = "pearson")

F
re

qu
en

cy

0 2 4 6 8 12

0
50

00
15

00
0

Deviance Residuals

resid(mod_start, type = "deviance")

F
re

qu
en

cy

−1 0 1 2 3

0
40

00
80

00

To further evaluate the fit of our model, we may want to observe the predicted
probabilities. The predict() function by default will return the predicted value
on the scale of the linear predictors. In this case, that is the predicted log odds.
If want to find the predicted probabilities, we can update the argument by

194 11 Logistic Regression

specifying type="response". Additionally, we can predict on data not used to
train the model by using the argument newdata. Note that there are only 18,747
predicted probabilities despite our training data having more observations.
This is because the glm() function (and lm() function) drop any observations
with NA values when training. In the last chapter, we omitted incomplete cases
prior to analysis so that the predicted probabilities corresponded directly to
the rows in our data.

pred_probs <- predict(mod_start, type="response")
length(pred_probs)
#> [1] 18747

If want to find the class for each observation used in fitting the model, we
can use the model’s output, which stores the model matrix x and the outcome
vector y. We plot the distribution of estimated probabilities for each class.
Note that all the predicted probabilities are below 0.5, the typical cut-off for
prediction. This is in part due to the fact that we have such an imbalanced
outcome.

ggplot() +
geom_histogram(aes(x=pred_probs, fill=as.factor(mod_start$y)),

bins=30) +
scale_fill_discrete(name="E-Cig Use") +
labs(x="Predicted Probabilities", y="Count")

0

500

1000

1500

2000

2500

0.0 0.1 0.2
Predicted Probabilities

C
ou

nt

E−Cig Use

0

1

11.2 Residuals, Discrimination, and Calibration 195

11.2.1 Receiver Operating Characteristic (ROC) Curve
We now plot the receiver operating characteristic (ROC) curve and compute
the area under the curve (AUC). The roc() function from the pROC package
builds an ROC curve. The function has several ways to specify a response
and predictor. For example, we can specify the response vector response and
predictor vector predictor. By default, with a 0/1 outcome, the roc() function
will assume class 0 is controls and class 1 is cases. We can also specify this
in the levels argument to specify the value of the response for controls and
cases, respectively. Additionally, the function assumes the predictor vector
specifies predicted probabilities for the class 1. We can change the argument
direction = ">" if the opposite is true. We can plot the ROC curve by calling
the plot() function. We can add some extra information by adding the AUC
(print.auc = TRUE) and the threshold that maximizes sensitivity + specificity
(print.thres = TRUE).

roc_mod <- roc(predictor=pred_probs,
response=as.factor(mod_start$y),
levels = c(0,1), direction = "<")

plot(roc_mod, print.auc=TRUE, print.thres = TRUE)

Specificity

S
en

si
tiv

ity

1.5 1.0 0.5 0.0 −0.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.080 (0.690, 0.665)

AUC: 0.731

If we want to understand more about the curve, we can use the coords()
function to find the coordinates for each threshold used to create the curve.
The argument x= "all" specifies we want to find all thresholds, but we could
also specify only to return local maxima.

roc_vals <- coords(roc=roc_mod, x = "all")
head(roc_vals)

196 11 Logistic Regression

#> threshold specificity sensitivity
#> 1 -Inf 0.00000 1.000
#> 2 0.00569 0.00523 1.000
#> 3 0.00713 0.01070 1.000
#> 4 0.00850 0.01547 0.999
#> 5 0.00934 0.01835 0.998
#> 6 0.00982 0.02404 0.996

For example, we could use this information to find the highest threshold with
a corresponding sensitivity above 0.75. This returns a threshold of 0.062. If we
were to predict class 1 for all observations with a predicted probability above
0.062, then we would achieve a sensitivity of 0.77 and specificity of 0.56 on
the training data.

roc_vals[roc_vals$sensitivity > 0.75,] %>% tail(n=1)
#> threshold specificity sensitivity
#> 63 0.062 0.555 0.768

We will use the threshold of 0.080 indicated on our ROC curve to create
predicted classes for our response. By comparing the result to our outcome
using the table() function, we can directly calculate measures like sensitivity,
specificity, positive and negative predictive values, and overall accuracy.

pred_ys <- ifelse(pred_probs > 0.08, 1, 0)
tab_outcome <- table(mod_start$y, pred_ys)
tab_outcome
#> pred_ys
#> 0 1
#> 0 11992 5395
#> 1 455 905

sens <- tab_outcome[2,2]/(tab_outcome[2,1]+tab_outcome[2,2])
spec <- tab_outcome[1,1]/(tab_outcome[1,1]+tab_outcome[1,2])
ppv <- tab_outcome[2,2]/(tab_outcome[1,2]+tab_outcome[2,2])
npv <- tab_outcome[1,1]/(tab_outcome[1,1]+tab_outcome[2,1])
acc <- (tab_outcome[1,1]+tab_outcome[2,2])/sum(tab_outcome)

data.frame(Measures = c("Sens", "Spec", "PPV", "NPV", "Acc"),
Values = round(c(sens, spec, ppv, npv, acc),3))

11.2 Residuals, Discrimination, and Calibration 197

#> Measures Values
#> 1 Sens 0.665
#> 2 Spec 0.690
#> 3 PPV 0.144
#> 4 NPV 0.963
#> 5 Acc 0.688

11.2.2 Calibration Plot
Another useful plot is a calibration plot. This type of plot groups the data
by the estimated probabilities and compares the mean probability with the
observed proportion of observations in class 1. It visualizes how close our esti-
mated distribution and true distribution are to each other. There are several
packages that can create calibration plots, but we demonstrate how to do this
using the ggplot2 package. First, we create a data frame with the predicted
probabilities and the outcome variable. Additionally, we group this data into
num_cuts groups based on the predicted probabilities using the cut() func-
tion. Within each group, we find the model’s predicted mean along with the
observed proportion and estimated standard errors.

num_cuts <- 10
calib_data <- data.frame(prob = pred_probs,

bin = cut(pred_probs, breaks = num_cuts),
class = mod_start$y)

calib_data <- calib_data %>%
group_by(bin) %>%
summarize(observed = sum(class)/n(),

expected = sum(prob)/n(),
se = sqrt(observed*(1-observed)/n()))

calib_data
#> # A tibble: 10 x 4
#> bin observed expected se
#> <fct> <dbl> <dbl> <dbl>
#> 1 (0.00488,0.0322] 0.0212 0.0203 0.00188
#> 2 (0.0322,0.0592] 0.0440 0.0441 0.00328
#> 3 (0.0592,0.0862] 0.0621 0.0708 0.00451
#> 4 (0.0862,0.113] 0.0986 0.0988 0.00587
#> 5 (0.113,0.14] 0.131 0.123 0.0131
#> # i 5 more rows

Next, we plot the observed vs expected proportions. We also used the esti-
mated standard error to create corresponding 95% confidence intervals. The

198 11 Logistic Regression

red line indicates a perfect fit where our estimated and true distributions
match. Overall, the plot below shows that our model could be better cali-
brated.

ggplot(calib_data) +
geom_abline(intercept = 0, slope = 1, color="red") +
geom_errorbar(aes(x = expected, ymin=observed-1.96*se,

ymax=observed+1.96*se),
colour="black", width=.01)+

geom_point(aes(x = expected, y = observed)) +
labs(x="Expected Proportion", y="Observed Proportion") +
theme_minimal()

0.1

0.2

0.3

0.1 0.2
Expected Proportion

O
bs

er
ve

d
P

ro
po

rt
io

n

11.2.3 Practice Question
Create a calibration plot with 5 cuts for your model from the previous prac-
tice question (recall that this model should have cigarette use as the outcome
and age, race_and_ethnicity, LGBT, and family_affluence as well as an in-
teraction between family_affluence and race_and_ethnicity as independent
variables). It should look like Figure 11.1.

11.3 Variable Selection and Likelihood Ratio Tests 199

Figure 11.1: Calibration Plot.

Insert your solution here:

11.3 Variable Selection and Likelihood Ratio Tests
In the last chapter, we introduced the step() function to implement stepwise
variable selection. This function also works with glm objects. In this case,
we use this function to implement backward selection from a larger set of
covariates. We first remove any observations with NA values to ensure that
our training data does not change size as the formula changes.

200 11 Logistic Regression

nyts_sub <- nyts %>%
dplyr::select(location, sex, grade, otherlang, grades_in_past_year,

perceived_e_cig_use, race_and_ethnicity, LGBT,
psych_distress, family_affluence, e_cig_use) %>%

na.omit()
head(nyts_sub)
#> # A tibble: 6 x 11
#> location sex grade otherlang grades_in_past_year

perceived_e_cig_use↪

#> <fct> <fct> <fct> <fct> <fct> <dbl>
#> 1 school Male 6th No Mostly A's 0
#> 2 school Fema~ 6th No Mostly A's 0
#> 3 school Fema~ 6th No Mostly C's 0
#> 4 school Fema~ 6th No Mostly A's 0
#> 5 school Fema~ 6th No Mostly B's 0
#> # i 1 more row
#> # i 5 more variables: race_and_ethnicity <chr>, LGBT <chr>,
#> # psych_distress <chr>, family_affluence <chr>, e_cig_use <fct>

To implement backward selection, we first create a model with all the covari-
ates included. The period . in the formula indicates that we want to include
all variables. Next, we use the step() function. Since we are using backward
selection, we only need to specify the lower formula in the scope.

model_full <- glm(e_cig_use ~ ., data = nyts_sub, family = binomial)
mod_step <- step(model_full, direction = 'backward',

scope = list(lower = "e_cig_use ~ sex + grade +
race_and_ethnicity + location"))

#> Start: AIC=6093
#> e_cig_use ~ location + sex + grade + otherlang +

grades_in_past_year +↪

#> perceived_e_cig_use + race_and_ethnicity + LGBT +
psych_distress +↪

#> family_affluence
#>
#> Df Deviance AIC
#> - family_affluence 2 6038 6090
#> <none> 6037 6093
#> - otherlang 1 6042 6096
#> - LGBT 2 6051 6103
#> - psych_distress 3 6106 6156
#> - grades_in_past_year 6 6126 6170
#> - perceived_e_cig_use 1 6416 6470

11.3 Variable Selection and Likelihood Ratio Tests 201

#>
#> Step: AIC=6090
#> e_cig_use ~ location + sex + grade + otherlang +

grades_in_past_year +↪

#> perceived_e_cig_use + race_and_ethnicity + LGBT + psych_distress
#>
#> Df Deviance AIC
#> <none> 6038 6090
#> - otherlang 1 6043 6093
#> - LGBT 2 6052 6100
#> - psych_distress 3 6106 6152
#> - grades_in_past_year 6 6128 6168
#> - perceived_e_cig_use 1 6418 6468

Stepwise selection keeps most variables in the model and only drops family
affluence. Below, we can see the AUC for this model has improved to 0.818.

roc_mod_step <- roc(predictor=predict(mod_step, type="response"),
response=as.factor(mod_step$y),
levels = c(0,1), direction = "<")

plot(roc_mod_step, print.auc=TRUE, print.thres = TRUE)

Specificity

S
en

si
tiv

ity

1.5 1.0 0.5 0.0 −0.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.067 (0.731, 0.766)

AUC: 0.818

If we want to compare this model to our model above, we could use a likelihood
ratio test since the two models are nested. The lrtest() function from the
lmtest package allows us to input two nested glm models and performs a
corresponding Chi-squared likelihood ratio test. First, we need to ensure that
our initial model is fit on the same data used in the stepwise selection. The

202 11 Logistic Regression

output below indicates a statistically significant improvement in the model
likelihood with the inclusion of the other variables.

mod_start2 <- glm(e_cig_use ~ grade + sex + race_and_ethnicity +
location, data = nyts_sub, family = binomial)

print(lrtest(mod_start2, mod_step))
#> Likelihood ratio test
#>
#> Model 1: e_cig_use ~ grade + sex + race_and_ethnicity + location
#> Model 2: e_cig_use ~ location + sex + grade + otherlang +

grades_in_past_year +↪

#> perceived_e_cig_use + race_and_ethnicity + LGBT + psych_distress
#> #Df LogLik Df Chisq Pr(>Chisq)
#> 1 13 -3369
#> 2 26 -3019 13 701 <2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

11.4 Extending Beyond Binary Outcomes
The glm() function can be used to fit models for other possible families and
non-binary outcomes. For example, we can fit models where the outcome might
follow a Poisson distribution or negative binomial distribution by updating the
family argument. Below, we fit a Poisson model to model the number of e-
cigarettes used in the last 30 days by setting family = poisson. However,
despite the fact that our outcome is a count value, this model doesn’t seem
to be a good fit for our data.

mod_poisson <- glm(num_e_cigs ~ grade + sex + race_and_ethnicity +
location, data = nyts, family = poisson)

par(mfrow=c(1,2))
hist(predict(mod_poisson, type="response"), main="Model",

xlab="Predicted Values")
hist(nyts$num_e_cigs, main="Observed", xlab="Number E-Cigs")

11.5 Exercises 203

Model

Predicted Values

F
re

qu
en

cy

0 2 4 6

0
40

00
80

00

Observed

Number E−Cigs
F

re
qu

en
cy

0 5 15 25

0
50

00
15

00
0

11.5 Exercises
1. Create a new variable tobacco_use representing any tobacco use in

the past 30 days (including e-cigs, cigarettes, and/or cigars) as well
as a new variable perceived_tobacco_use equal to the maximum of
the perceived cigarette and e-cig use. Then, create a new data frame
nyts_sub that contains these two new columns as well as columns
for sex, grades in the past year, psych distress, and family affluence.
Finally, fit a logistic regression model with this new tobacco use
variable as the outcome and all other selected variables as indepen-
dent variables.

2. Perform stepwise selection on your model from Question 1 with di-
rection = "both", setting the upper scope of the model selection
procedure to be a model including all two-way interactions and the
lower scope to be a model including only an intercept. To specify all
possible interactions you can use the formula "tobacco_use ~ .^2".
Use the tidy() function to display the exponentiated estimated co-
efficients for the resulting model along with a confidence interval.

3. According to your model from Question 2, what is the estimated
probability of tobacco use for a girl with mostly C’s, moderate psych
distress, and a perceived tobacco use of 0.5? Use the predict()
function to answer this question.

4. Construct an ROC curve for the model from Question 2 and find

204 11 Logistic Regression

the AUC as well as the threshold that maximizes sensitivity and
specificity.

Part V

Extra Topics

12
Writing Reports in R Markdown

This chapter will introduce you to R Markdown, which is a document for-
mat that combines markdown text with R code. Writing in R markdown can
help you write reproducible code and create polished reports to present your
analyses.

12.1 Starting an R Markdown file
To create an R Markdown file, you will need to have RStudio installed as an ap-
plication. You’ll also need to install the rmarkdown package (Xie, Dervieux,
and Riederer 2020) in addition to the knitr package (Xie 2023). We also rec-
ommend the bookdown package (Xie 2016), which allows us to create section,
figure, and table references, as well as the kableExtra package (Zhu 2021)
for formatting your tables.

Now that you have these packages downloaded, opening a new R Markdown
file is very similar to opening a new R file, which was covered in Chapter 1.
Just like opening a new R file, you’ll want to go to File -> New File, but
instead of selecting ‘R Script’, you’ll now select ‘R Markdown…’. This should
bring up a window that looks like Figure 12.1.

First, enter a title of your choosing for your report and type your name in the
Author field - note that you can always change these later - and then click on
OK. This will open an R Markdown file that has the extension .Rmd. Make
sure to save this file with a suitable name in your desired location on your
computer by selecting File -> Save, and then you’re ready to start writing
your report! Your file should now look like Figure 12.2.

You will write all of the text and code that you would like to include in your
report in this .Rmd file, and then you can produce a nicely formatted report
from this file by ‘knitting’ the file. You can either knit to HTML, PDF, or
WORD by clicking on the knit icon from the toolbar at the top of the
page and then selecting your desired output file type.

207

208 12 Writing Reports in R Markdown

Figure 12.1: Creating a New R Markdown Document.

Figure 12.2: A New R Markdown Document.

12.1 Starting an R Markdown file 209

12.1.1 Adding Code Chunks
Each of the darker gray rectangles is called a code chunk - all of the code used
to generate your report will go in these chunks, and all of your writing will
go between them. Each code chunk starts with ```{r} and ends with ```. To
create a chunk, you can either

• click on this green “add chunk” symbol in the toolbar at the top of
the page,

• type ```{r} and ```, OR

• use the keyboard shortcut Ctrl + Alt + I (Cmd + Option + I on
Macs).

To run the code in a chunk, you can either use the keyboard shortcut Ctrl
+ Enter (Cmd + Return on Mac), or you can use one of the following

buttons at the top right of the chunks: runs all chunks above the current

chunk and runs the current chunk.

12.1.2 Customizing Chunks
You can specify whether you want to include the code and/or its various
output in your final report by adding the following commands, separated by
commas, to the right of the {r} at the top of the code chunk:

• include = FALSE makes it so that neither code nor its output will appear in
your report.

• echo = FALSE makes it so that the output of the code but not the code itself
will appear in your report.

• message = FALSE, warning = FALSE, and error = FALSE make it so that
messages, warnings, and errors (respectively) that are generated from the
code in the chunk won’t appear in your report.

To customize a single code chunk, you can either type one of the above com-
mands next to the {r} at the top of the code chunk by yourself or you can click
on the ‘Modify Chunk Options’ symbol at the top right of the code chunk and
change the settings there.

To apply the same customizations to all chunks in the document at once, you
can add them to the first chunk at the very top of your R Markdown that
starts with ```{r setup, include=FALSE} using the knitr::opts_chunk$set()
function. These are called the global settings. For example, using the following
code for your first code chunk will make it so that none of the errors, warnings,
or messages from any of the code chunks will appear in your final report. It
is also good practice to load all the packages you are using for your report

210 12 Writing Reports in R Markdown

within this first code chunk using the library() function. For example, below
we load the tidyverse and HDSinRdata packages.

If you want to display the code for your report in a code appendix, you can
easily do this by creating an empty code chunk at the end of your .Rmd file
with these chunk options ref.label=knitr::all_labels(), echo = TRUE, and
eval = FALSE.

::: {.cell layout-align="center"}

```{.r .cell-code .code-overflow-wrap}
library(tidyverse)
library(HDSinRdata)
library(kableExtra)
library(gt)
data(breastcancer)
knitr::opts_chunk$set(echo = TRUE, warning = FALSE, error = FALSE, echo = FALSE)
library(tidyverse)
library(HDSinRdata)
breastcancer %>%
select(id, diagnosis, radius_mean, texture_mean, perimeter_mean) %>%
head()

breastcancer %>%
select(id, diagnosis, radius_mean, texture_mean, perimeter_mean) %>%
head() %>%
kable(caption = "Head of the Breast Cancer Dataset",

col.names = c("ID", "Diagnosis", "Mean Radius", "Mean Texture",
"Mean Perimeter")) %>%

kable_styling(latex_options = c("scale_down", "HOLD_position"))
breastcancer %>%
select(id, diagnosis, radius_mean, texture_mean, perimeter_mean) %>%
head() %>%
gt() %>%
tab_header(title = "Head of the Breast Cancer Dataset") %>%
cols_label(id ~ "ID",

diagnosis ~ "Diagnosis",
radius_mean ~ "Mean Radius",
texture_mean ~ "Mean Texture",
perimeter_mean ~ "Mean Perimeter")

```
:::

You can also have inline R code by using single backticks around your code 3.
The code must start with r to be run when knit. This allows you to reference

12.2 Formatting Text in Markdown 211

variables in your text. For example, we could display the variance of a column
in our data without having to copy the value over.

27.96

12.2 Formatting Text in Markdown
To add text to your report, you can simply type directly into the R Markdown
file, between the code chunks. This code is formatted using markdown, which
allows us to specify how to format and display the text when it is knit. For
example, adding a single asterisk * on either side of some text will italicize it,
while adding a double asterisk ** on either side of text will make it bold. To
indicate code, you can use backticks `.

regular text regular text

italicized text italicized text

bolded text bolded text

`code text` code text

To create headers and sections, you can add the # symbol in front of your text.
Adding more of these symbols makes the headers smaller, which is useful for
making subheaders.

Header

Smaller Header

Even Smaller Header

You can also add links [text](www.example.com) and images ![alt
text](image.png)

Example link.1

1https://alicepaul.github.io/health-data-science-using-r/

https://alicepaul.github.io/health-data-science-using-r/

212 12 Writing Reports in R Markdown

Figure 12.3: Example header sizes.

Figure 12.4: Example Image.

The Markdown Guide2 has a great cheat sheet3 as well as more resources for
formatting markdown text.

12.3 Formatting Figures and Tables
Often, you’ll want to include figures generated by your code in your report,
and you can customize these figures by changing the chunk options for the
chunks that produce them. To change the size of a figure, you can add in the
chunk option out.width="50%" with your desired percentage of the full size.

2https://www.markdownguide.org/
3https://www.markdownguide.org/cheat-sheet/

https://www.markdownguide.org/
https://www.markdownguide.org/cheat-sheet/

12.3 Formatting Figures and Tables 213

To add a nice caption to a figure in your report, you can add fig.cap = 'Your
Desired Caption.. To name a figure, you can add a name next to the r in
the chunk options, without a comma, like {r figname}. Alternatively, you can
name figures by entering text into the ‘Chunk Name’ field using the ‘Modify
Chunk Options’ button at the top right of a chunk.

By default, the figures generated by your code chunks are allowed to ‘float’ in
R Markdown - this means that the figures might move away from where they
were coded or referenced in the final report. If you don’t want this to happen,
you can customize the chunk that contains the code to produce the figure by
adding fig.pos = "H" to that chunk’s options. If you want to prevent floating
for all figures, add fig.pos = "H", out.extra = '' to the first code chunk in
the file (the one that starts with the knitr::opts_chunk$set() function).

```{r myfigure, fig.cap="Figure of Average Radius vs. Diagnosis", out.width="75%",
fig.pos="H"}

data(breastcancer)
ggplot(breastcancer) +
geom_boxplot(aes(x = diagnosis, y = radius_mean), fill = 'lightblue') +
theme_bw() +
labs(y = "Average Radius") +
scale_x_discrete("Diagnosis", labels = c("Benign", "Malignant"))

```

If you want to make data frames, matrices, or tables from your raw R output

214 12 Writing Reports in R Markdown

more polished and aesthetically pleasing, you can use the gt and kableExtra
packages. Be sure to load the package you are using to the code chunk at the
top of your R Markdown file that contains all of your libraries.

To demonstrate the abilities of these package, let’s suppose that we wanted
to display the head of the first few columns of the breastcancer dataset from
the HDSinRdata package. The following code produces the following output
in the knitted pdf report - you can see that it essentially just copies the raw
output from R, which is rather messy.

breastcancer %>%
select(id, diagnosis, radius_mean, texture_mean, perimeter_mean) %>%
head()

#> id diagnosis radius_mean texture_mean perimeter_mean
#> 1 842302 M 18.0 10.4 122.8
#> 2 842517 M 20.6 17.8 132.9
#> 3 84300903 M 19.7 21.2 130.0
#> 4 84348301 M 11.4 20.4 77.6
#> 5 84358402 M 20.3 14.3 135.1
#> 6 843786 M 12.4 15.7 82.6

We use the kable() and kable_styling() functions from the kableExtra
package to produce a more nicely formatted table. The kable() function gen-
erates a table from a data frame. The kable() function allows you to specify
some display options for your table. For example, you can add a caption to
your table using the caption argument, and you can change the names of
the columns in the table using the col.names argument. The kable_styling()
has additional options available. Similar to the fig.pos = H command de-
scribed for figures in the previous section, adding “HOLD_position” to the
kable_styling() function will prevent the table from floating on the report;
adding "scale_down" scales the table so that it fits in the margins of the pa-
per. The updated code and output are below. See the documentation for the
kable() and kable_styling() functions for more options available.

breastcancer %>%
select(id, diagnosis, radius_mean, texture_mean, perimeter_mean) %>%
head() %>%
kable(caption = "Head of the Breast Cancer Dataset",

col.names = c("ID", "Diagnosis", "Mean Radius", "Mean Texture",
"Mean Perimeter")) %>%

kable_styling(latex_options = c("scale_down", "HOLD_position"))

12.3 Formatting Figures and Tables 215

Table 12.1: Head of the Breast Cancer Dataset

ID Diagnosis Mean Radius Mean Texture Mean Perimeter
842302 M 18.0 10.4 122.8
842517 M 20.6 17.8 132.9

84300903 M 19.7 21.2 130.0
84348301 M 11.4 20.4 77.6
84358402 M 20.3 14.3 135.1

843786 M 12.4 15.7 82.6

Above, we can see that kable produces a much nicer table in the knitted pdf
that is more suitable for a data analysis report. In Chapter 4, we also intro-
duced the gt package. This package is an alternative package to kableExtra
that allows you to format each part of the table and includes options for for-
matting the columns, adding footers or subtitles, or grouping your table. See
the package introduction4 for more details about this package. An example
gt table is given below.

breastcancer %>%
select(id, diagnosis, radius_mean, texture_mean, perimeter_mean) %>%
head() %>%
gt() %>%
tab_header(title = "Head of the Breast Cancer Dataset") %>%
cols_label(id ~ "ID",

diagnosis ~ "Diagnosis",
radius_mean ~ "Mean Radius",
texture_mean ~ "Mean Texture",
perimeter_mean ~ "Mean Perimeter")

4https://gt.rstudio.com/articles/intro-creating-gt-tables.html

https://gt.rstudio.com/articles/intro-creating-gt-tables.html

216 12 Writing Reports in R Markdown

12.4 Using Bookdown for References
R Markdown automatically adds figure and table numbers to the figures and
tables in your report. The bookdown package allows us to add references. To
use this package, make sure you have installed the bookdown package and
then add the following text to the top of your .Rmd file, next to “output”.

output:
bookdown::pdf_document2:

toc: false

The above code specifies that you would like to knit your file to a pdf docu-
ment. If you would like to knit your file to an html or word document instead,
you could type bookdown::html_document2 or bookdown::word_document2. The
toc: false indicates that you do not want to include a table of contents
in the report - if you do want one, you can simply type toc:true instead.
Once you’ve done this, you can reference figures and tables using their names:
\@ref(fig:figname)) or \@ref(tab:tablename). The knitted pdf will substi-
tute the appropriate figure or table number into your text.

Additionally, we can reference sections by adding in labels to the section
header. For example, we added the tag #awesome for the section below and
can now reference it using \@ref{awesome}.

Awesome Stuff {#awesome}

12.5 Adding in Equations 217

12.5 Adding in Equations
Another useful option in markdown is the option to add in mathematical
equations. If you want to insert math equations, you can do so by writing
LaTeX expressions. To write a math equation inline, you put a single dollar
sign $ on either side of your equation, and to write a math equation on its
own line, you put a double dollar sign $$ on either side of the equation, like
so:

Here’s an equation that is inline with the text: $5x^2 + 9x^3$ produces 5𝑥2 +
9𝑥3. On the other hand, here’s an equation that is on its own line: $$5x^2 +
9x^3$$ produces 5𝑥2 + 9𝑥3

Here is some other LaTeX notation that you should know in order to write com-
mon equations: * To create a fraction, type \frac{numerator}{denominator}.
For example, \frac{2}{3} produces 2

3 . * To create a subscript, type _. For
example, x_{2} produces 𝑥2. * To create a superscript, type ^. For example,
x^{2} produces 𝑥2.

If you want to learn more about how to write in LaTeX, Art of Problem
Solving5 provides a great reference for LaTeX symbols and Overleaf6 provides
a helpful introduction to LaTeX in general.

12.6 Exercises
The exercise for this chapter is to recreate this example pdf7 created from
an R Markdown file. You will need to use the breastcancer dataset from the
HDSinRdata package.

5https://artofproblemsolving.com/wiki/index.php/LaTeX:Symbols
6https://www.overleaf.com/learn/latex/Tutorials#Learn_LaTeX_in_30_minutes
7https://github.com/alicepaul/health-data-science-using-r/blob/main/book/refs/Ex

ampleRMarkdown.pdf

https://artofproblemsolving.com/wiki/index.php/LaTeX:Symbols
https://www.overleaf.com/learn/latex/Tutorials#Learn_LaTeX_in_30_minutes
https://github.com/alicepaul/health-data-science-using-r/blob/main/book/refs/ExampleRMarkdown.pdf
https://github.com/alicepaul/health-data-science-using-r/blob/main/book/refs/ExampleRMarkdown.pdf

13
Expanding your R Skills

Throughout this book, we have covered some popular packages as well as many
of the specific functions from these packages. However, it would be impossible
to cover all of the packages, functions, and options that R has. As you start to
apply the tools from this book to your own work or in new settings, you may
need to install and use new packages or encounter some unexpected errors.
Practicing reading package documentation and responding to error messages
will help you be able to expand your R skills beyond the topics covered here.

We will demonstrate these skills using the stringr package (Wickham 2022),
which is a package that is part of the tidyverse and has several functions for
dealing with text data.

library(tidyverse)
library(HDSinRdata)

13.1 Reading Documentation for New Packages
Every published package has a CRAN website. This website contains a ref-
erence manual that contains the documentation for the functions and data
available in the package. Most often, the website also includes useful vignettes
that give examples of how to use the functions in the package. The site also
tells you what the requirements for using the package are, who the authors of
the package are, and when the package was last updated. For example, take
a look at the CRAN site for stringr1 and read the vignette “Introduction to
String R”2.

We will use this stringr package to clean up text related to a PubMed search
query for a systematic review. An example search query is given below and
is taken from Gue et al. (2021). Our first goal will be to extract the actual
search query from the text along with all the terms used in the query. We can

1https://cran.r-project.org/web/packages/stringr/index.html
2https://cran.r-project.org/web/packages/stringr/vignettes/stringr.html

219

https://cran.r-project.org/web/packages/stringr/index.html
https://cran.r-project.org/web/packages/stringr/vignettes/stringr.html

220 13 Expanding your R Skills

assume that the search query will either be fully contained in parentheses or
will be a sequence of parenthetical phrases connected with AND or OR. Our
goal is to extract the search query as well as all the individual search terms
used in the query, but we have to get there in a series of steps.

sample_str <- " A systematic search will be performed in PubMed,
Embase, and the Cochrane Library, using the following search query:
('out-of-hospital cardiac arrest' OR 'OHCA') AND ('MIRACLE 2' OR
'OHCA' OR 'CAHP' OR 'C-GRAPH' OR 'SOFA' OR 'APACHE' OR 'SAPS’ OR
’SWAP’ OR ’TTM’)."

The first thing we want to do with the text is clean up the whitespace by
removing any trailing, leading, or repeated spaces. In our example, the string
starts with a trailing space and there are also multiple spaces right before the
search query. Searching for “whitespace” in the stringr reference manual, we
find the str_trim() and str_squish() functions. Read the documentation for
these two functions. You should find that str_squish() is the function we are
looking for and that it takes a single argument.

sample_str <- str_squish(sample_str)
sample_str
#> [1] "A systematic search will be performed in PubMed, Embase, and

the Cochrane Library, using the following search query:
('out-of-hospital cardiac arrest' OR 'OHCA') AND ('MIRACLE 2' OR
'OHCA' OR 'CAHP' OR 'C-GRAPH' OR 'SOFA' OR 'APACHE' OR 'SAPS’ OR
’SWAP’ OR ’TTM’)."

↪

↪

↪

↪

13.2 Trying Simple Examples
The premise above is a good example of starting with a simple case. Rather
than applying your function to your full data set right away, you want to first
make sure that you understand how it works on a simple example on which
you can anticipate what the outcome should look like. My next task will be
to split the text into words and store this as a character vector. Read the
documentation to determine why I used the str_split_1() function below. I
then double check that the returned result is indeed a vector and print the
result.

13.3 Deciphering Error Messages and Warnings 221

sample_str_words <- str_split_1(sample_str, " ")
class(sample_str_words)
#> [1] "character"
sample_str_words
#> [1] "A" "systematic" "search"
#> [4] "will" "be" "performed"
#> [7] "in" "PubMed," "Embase,"
#> [10] "and" "the" "Cochrane"
#> [13] "Library," "using" "the"
#> [16] "following" "search" "query:"
#> [19] "('out-of-hospital" "cardiac" "arrest'"
#> [22] "OR" "'OHCA')" "AND"
#> [25] "('MIRACLE" "2'" "OR"
#> [28] "'OHCA'" "OR" "'CAHP'"
#> [31] "OR" "'C-GRAPH'" "OR"
#> [34] "'SOFA'" "OR" "'APACHE'"
#> [37] "OR" "'SAPS’" "OR"
#> [40] "’SWAP’" "OR" "’TTM’)."

We now want to identify words in this vector that have starting and/or end
parentheses. The function grepl() takes in a character vector x and a pattern
to search for. It returns a logical vector for whether or not each element of x
has a match for that pattern.

grepl(sample_str_words, ")")
#> Warning in grepl(sample_str_words, ")"): argument 'pattern' has

length↪

#> > 1 and only the first element will be used
#> [1] FALSE

Huh, that didn’t match what I expected! I expected to have multiple
TRUE/FALSE values outputted - one for each word. Let’s read the docu-
mentation again.

13.3 Deciphering Error Messages and Warnings
The warning message above will give us a good clue for what went wrong. It
says that the inputted pattern has length > 1. However, the pattern I gave
it is a single character. In fact, I specified the arguments in the wrong order.
Let’s try again. This time I specify x and pattern.

222 13 Expanding your R Skills

grepl(x=sample_str_words, pattern=")")
#> [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

FALSE↪

#> [12] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
FALSE↪

#> [23] TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
FALSE↪

#> [34] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE

That worked! However, it won’t work if we change that to a starting paren-
theses. Try it out for yourself to see this. The error message says that it is
looking for an end parentheses. In this case, the documentation does not help
us. Let’s try googling “stringr find start parentheses”. The first search result
for me is a stack overflow question3 that helps us out. We read that we need
to use backslashes to tell R to read the parentheses literally rather than as a
special character used in a regular expression.

grepl(x=sample_str_words, pattern="\\(")
#> [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

FALSE↪

#> [12] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE
FALSE↪

#> [23] FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
FALSE↪

#> [34] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

When a function doesn’t return what we expect it to, it is a good idea to
first test whether the arguments we gave it match what we expect, then to
re-read the documentation, and then to look for other resources for help. For
example, we could check that sample_str_words is indeed a character vector,
then re-read the stringr documentation, and then google our problem.

13.3.1 Debugging Code
The code below is supposed to extract the search query from the text as well
as find the individual search terms used in the query. However, the code is
incorrect. You can try out to two test strings given to see why the code output
is wrong. Practice reading through the code to understand what it is trying
to do. The comments are there to help explain the steps, but you may also
want to print the output to figure out what it is doing.

3https://stackoverflow.com/questions/56174805/how-to-search-for-strings-with-
parentheses-in-r

https://stackoverflow.com/questions/56174805/how-to-search-for-strings-with-parentheses-in-r
https://stackoverflow.com/questions/56174805/how-to-search-for-strings-with-parentheses-in-r

13.3 Deciphering Error Messages and Warnings 223

sample_strA <- " A systematic search will be performed in PubMed,
Embase, and the Cochrane Library, using the following search query:
('out-of-hospital cardiac arrest' OR 'OHCA') AND ('MIRACLE 2' OR
'OHCA' OR 'CAHP' OR 'C-GRAPH' OR 'SOFA' OR 'APACHE' OR 'SAPS’ OR
’SWAP’ OR ’TTM’)."

sample_strB <- "Searches will be conducted in MEDLINE via PubMed, Web
of Science, Scopus and Embase. The following search strategy will be
used:(child OR infant OR preschool child OR preschool children OR
preschooler OR pre-school child OR pre-school children OR pre school
child OR pre school children OR pre-schooler OR pre schooler OR
children OR adolescent OR adolescents)AND(attention deficit disorder
with hyperactivity OR ADHD OR attention deficit disorder OR ADD OR
hyperkinetic disorder OR minimal brain disorder) Submitted "

sample_str <- sample_strB

separate parentheses, remove extra whitespace, and split into words
sample_str <- str_replace(sample_str, "\\)", " \\) ")
sample_str <- str_replace(sample_str, "\\(", " \\(")
sample_str <- str_squish(sample_str)
sample_str_words <- str_split_1(sample_str, " ")

find indices with parentheses
end_ps <- grepl(x=sample_str_words, pattern="\\)")
start_ps <- grepl(x=sample_str_words, pattern="\\(")

find words between first and last parentheses
search_query <- sample_str_words[which(end_ps)[1]:which(start_ps)[1]]
search_query <- paste(search_query, collapse=" ")
search_query
#> [1] ") adolescents OR adolescent OR children OR schooler pre OR

pre-schooler OR children school pre OR child school pre OR
children pre-school OR child pre-school OR preschooler OR children
preschool OR child preschool OR infant OR child ("

↪

↪

↪

find search terms
search_terms <- str_replace_all(search_query, "\\)", "")
search_terms <- str_replace_all(search_query, "\\(", "")
sample_terms <- str_squish(search_query)
search_terms <- str_split_1(search_terms, " AND | OR ")
search_terms

224 13 Expanding your R Skills

#> [1] ") adolescents" "adolescent" "children"
#> [4] "schooler pre" "pre-schooler" "children school

pre"↪

#> [7] "child school pre" "children pre-school" "child pre-school"
↪

#> [10] "preschooler" "children preschool" "child preschool"
↪

#> [13] "infant" "child "

13.4 General Programming Tips
As you write more complex code and functions, it is inevitable that you will
run into errors or unexpected behavior. Below are some simple principles that
are applicable to debugging in any setting. When it comes to testing code, a
good mantra is test early and test often. So, try to avoid writing too much
code before running and checking that the results match what you expect.

1. Check that all parentheses (), brackets [], and curly braces {} match.

2. Check that object names are correct.

3. Check whether you use the same name for different objects or
whether you use different names for the same object. You can do
this by using the ls() function to find all current objects.

4. Check that the input arguments to a function match what is ex-
pected.

5. Try simple examples first. You can use the documentation or vi-
gnette examples for ideas.

6. Localize your error by checking the values of objects at different
points.

7. Modify your code one piece at a time before checking it to avoid
introducing new errors.

8. Google error messages you don’t understand. R’s messages can
sometimes hint at what the error might stem from, but they are
not always direct.

13.5 Exercises 225

13.5 Exercises
1. Suppose we want to replace the words “Thank you” in the following

string with the word “Thanks”. Why does the below code fail? How
can we correct it?

string <- "Congratulations on finishing the book!
Thank you for reading it."
str_sub(string, c(35, 42)) <- "Thanks"
string
#> [1] "Congratulations on finishing the bThanks"
#> [2] "Congratulations on finishing the book! \nTThanks"

2. The code below uses the NHANESsample data from the HDSinRdata
package. The goal of the code is to plot the worst diastolic blood
pressure reading against the worst systolic blood pressure reading
for each patient, colored by hypertension status. However, the code
currently generates an error message. What is wrong with the code
below? There are four errors for you to identify and fix.

data(NHANESsample)

nhanes_df <- NHANESsample %>%
mutate(worst_DBP = max(DBP1, DBP2, DBP3, DBP4),

worst_SBP = max(SBP1, SBP2, SBP3, SBP4))

ggplot() %>%
geom_point(data = nhanes_df, aes(x = worst_SBP, y =

worst_DBP),↪

color = HYP)

3. The code below uses the breastcancer data from the HDSinRdata
package. The goal is to create a logistic regression model for whether
or not the diagnosis is benign or malignant and then to create a
calibration plot for the model, following the code from Chapter 11.
What is wrong with the code below? Debug it. Hint: there are three
separate errors.

226 13 Expanding your R Skills

data(breastcancer)

model <- glm(diagnosis ~ smoothness_worst + symmetry_mean +
texture_se + radius_mean,

data = breastcancer, family = binomial)

pred_probs <- predict(model)

num_cuts <- 10
calib_data <- data.frame(prob = pred_probs,

bin = cut(pred_probs, breaks = num_cuts),
class = mod_start$y)

calib_data <- calib_data %>%
group_by(bin) %>%
summarize(observed = sum(class)/n(),

expected = sum(prob)/n(),
se = sqrt(observed*(1-observed)/n()))

calib_data

ggplot(calib_data) +
geom_abline(intercept = 0, slope = 1, color="red") +
geom_errorbar(aes(x = expected, ymin=observed-1.96*se,

ymax=observed+1.96*se),
colour="black", width=.01)+

geom_point(aes(x = expected, y = observed)) +
labs(x="Expected Proportion", y="Observed Proportion") +
theme_minimal()

References

AJMC Staff. 2021. “A Timeline of COVID-19 Developments in 2020.” https:
//www.ajmc.com/view/a-timeline-of-covid19-developments-in-2020.

Alter, Benedict J, Nathan P Anderson, Andrea G Gillman, Qing Yin, Jong-
Hyeon Jeong, and Ajay D Wasan. 2021. “Hierarchical Clustering by
Patient-Reported Pain Distribution Alone Identifies Distinct Chronic Pain
Subgroups Differing by Pain Intensity, Quality, and Clinical Outcomes.”
PLoS One 16 (8): e0254862.

Centers for Disease Control and Prevention (CDC). 1999-2018. “National
Health and Nutrition Examination Survey Data (NHANES).” U.S. Depart-
ment of Health; Human Services. http://www.cdc.gov/nchs/nhanes.htm.

———. 2021. “National Youth Tobacco Survey (NYTS).” U.S. Department of
Health; Human Services. https://www.cdc.gov/tobacco/data_statistics/
surveys/nyts/index.htm.

Fox, John, SanfordWeisberg, and Brad Price. 2023. car: Companion to Applied
Regression. https://CRAN.R-project.org/package=car.

Gue, Ying X., Krishma Adatia, Rahim Kanji, Tatjana Potpara, Gregory Y.
H. Lip, and Diana A. Gorog. 2021. “Out-of-Hospital Cardiac Arrest: A
Systematic Review of Current Risk Scores to Predict Survival.” American
Heart Journal 234: 31–41. https://doi.org/https://doi.org/10.1016/j.ahj.
2020.12.011.

Guidotti, Emanuele. 2022. “A Worldwide Epidemiological Database for
COVID-19 at Fine-Grained Spatial Resolution.” Scientific Data 9 (1): 112.
https://doi.org/10.1038/s41597-022-01245-1.

Guidotti, Emanuele, and David Ardia. 2020. “COVID-19 Data Hub.” Journal
of Open Source Software 5 (51): 2376. https://doi.org/10.21105/joss.02376.

Hothorn, Torsten, Achim Zeileis, Richard W. Farebrother, and Clint Cummins.
2022. lmtest: Testing Linear Regression Models. https://CRAN.R-project.
org/package=lmtest.

Huang, Ziyao. 2022. “Association Between Blood Lead Level with High Blood
Pressure in US (NHANES 1999–2018).” Frontiers in Public Health 10:
836357.

Iannone, Richard, Joe Cheng, Barret Schloerke, Ellis Hughes, Alexandra
Lauer, and JooYoung Seo. 2023. gt: Easily Create Presentation-Ready Dis-
play Tables, Url = https://CRAN.R-project.org/package=gt.

Kortsmit, Katherine. 2023. “Abortion Surveillance—United States, 2021.”
MMWR. Surveillance Summaries 72.

227

https://www.ajmc.com/view/a-timeline-of-covid19-developments-in-2020
https://www.ajmc.com/view/a-timeline-of-covid19-developments-in-2020
http://www.cdc.gov/nchs/nhanes.htm
https://www.cdc.gov/tobacco/data_statistics/surveys/nyts/index.htm
https://www.cdc.gov/tobacco/data_statistics/surveys/nyts/index.htm
https://CRAN.R-project.org/package=car
https://doi.org/10.1016/j.ahj.2020.12.011
https://doi.org/10.1016/j.ahj.2020.12.011
https://doi.org/10.1038/s41597-022-01245-1
https://doi.org/10.21105/joss.02376
https://CRAN.R-project.org/package=lmtest
https://CRAN.R-project.org/package=lmtest

228 13 References

Neuwirth, Erich. 2022. RColorBrewer: ColorBrewer Palettes. https://CRAN
.R-project.org/package=RColorBrewer.

Park-Lee, Eunice, Andrea S Gentzke, Chunfeng Ren, Maria Cooper, Michael D
Sawdey, S Sean Hu, and Karen A Cullen. 2023. “Impact of Survey Setting
on Current Tobacco Product Use: National Youth Tobacco Survey, 2021.”
Journal of Adolescent Health 72 (3): 365–74.

Pedersen, Thomas Lin. 2022. patchwork: The Composer of Plots. https://CR
AN.R-project.org/package=patchwork.

Raifman, Julia, Kristen Nocka, David Jones, Jacob Bor, Sarah Lipson,
Jonathan Jay, Megan Cole, et al. 2022. “COVID-19 US State Policy
Database.” Inter-university Consortium for Political; Social Research. http
s://doi.org/10.3886/E119446V143.

Robin, Xavier, Natacha Turck, Alexandre Hainard, Natalia Tiberti, Frédérique
Lisacek, Jean-Charles Sanchez, and Markus Müller. 2023. pROC: Display
and Analyze ROC Curves. http://expasy.org/tools/pROC/.

Robinson, David, Alex Hayes, and Simon Couch. 2023. broom: Convert Sta-
tistical Objects into Tidy Tibbles. https://CRAN.R-project.org/package=
broom.

Roser, Max, and Hannah Ritchie. 2013. “Maternal Mortality.” https://ourw
orldindata.org/maternal-mortality.

Schloerke, Barret, Di Cook, Joseph Larmarange, Francois Briatte, Moritz Mar-
bach, Edwin Thoen, Amos Elberg, and Jason Crowley. 2021. GGally: Ex-
tension to ggplot2. https://CRAN.R-project.org/package=GGally.

Sjoberg, Daniel D., Joseph Larmarange, Michael Curry, Jessica Lavery,
Karissa Whiting, and Emily C. Zabor. 2023. gtsummary: Presentation-
Ready Data Summary and Analytic Result Tables. https://CRAN.R-
project.org/package=gtsummary.

Spinu, Vitalie, Garrett Grolemund, and Hadley Wickham. 2023. lubridate:
Make Dealing with Dates a Little Easier. https://CRAN.R-project.org/pa
ckage=lubridate.

Texas Health & Human Services Commission. 2016-2021. “Induced Termina-
tions of Pregnancy.” Texas Department of State Health Services. https:
//www.hhs.texas.gov/about/records-statistics/data-statistics/itop-
statistics.

Warren, Michael S, and Samuel W Skillman. 2020. “Mobility Changes in Re-
sponse to COVID-19.” arXiv Preprint arXiv:2003.14228.

Wickham, Hadley. 2016. Ggplot2: Elegant Graphics for Data Analysis.
Springer-Verlag New York. https://ggplot2.tidyverse.org.

———. 2022. stringr: Simple, Consistent Wrappers for Common String Op-
erations. https://CRAN.R-project.org/package=stringr.

———. 2023. tidyverse: Easily Install and Load the Tidyverse. https://CR
AN.R-project.org/package=tidyverse.

Wickham, Hadley, and Jennifer Bryan. 2023. readxl: Read Excel Files. https:
//CRAN.R-project.org/package=readxl.

Wickham, Hadley, Romain François, Lionel Henry, Kirill Müller, and Davis

https://CRAN.R-project.org/package=RColorBrewer
https://CRAN.R-project.org/package=RColorBrewer
https://CRAN.R-project.org/package=patchwork
https://CRAN.R-project.org/package=patchwork
https://doi.org/10.3886/E119446V143
https://doi.org/10.3886/E119446V143
http://expasy.org/tools/pROC/
https://CRAN.R-project.org/package=broom
https://CRAN.R-project.org/package=broom
https://ourworldindata.org/maternal-mortality
https://ourworldindata.org/maternal-mortality
https://CRAN.R-project.org/package=GGally
https://CRAN.R-project.org/package=gtsummary
https://CRAN.R-project.org/package=gtsummary
https://CRAN.R-project.org/package=lubridate
https://CRAN.R-project.org/package=lubridate
https://www.hhs.texas.gov/about/records-statistics/data-statistics/itop-statistics
https://www.hhs.texas.gov/about/records-statistics/data-statistics/itop-statistics
https://www.hhs.texas.gov/about/records-statistics/data-statistics/itop-statistics
https://ggplot2.tidyverse.org
https://CRAN.R-project.org/package=stringr
https://CRAN.R-project.org/package=tidyverse
https://CRAN.R-project.org/package=tidyverse
https://CRAN.R-project.org/package=readxl
https://CRAN.R-project.org/package=readxl

References 229

Vaughan. 2023. dplyr: A Grammar of Data Manipulation. https://CRAN
.R-project.org/package=dplyr.

Wickham, Hadley, Jim Hester, and Jennifer Bryan. 2023. readr: Read Rectan-
gular Text Data. https://CRAN.R-project.org/package=readr.

Wickham, Hadley, Evan Miller, and Danny Smith. 2023. haven: Import and
Export ’SPSS’, ’Stata’ and ’SAS’ Files. https://CRAN.R-project.org/pa
ckage=haven.

Wickham, Hadley, Davis Vaughan, and Maximilian Girlich. 2023. tidyr: Tidy
Messy Data. https://CRAN.R-project.org/package=tidyr.

Xie, Yihui. 2016. bookdown: Authoring Books and Technical Documents with
R Markdown. Boca Raton, Florida: Chapman; Hall/CRC. https://bookdo
wn.org/yihui/bookdown.

———. 2023. knitr: A General-Purpose Package for Dynamic Report Gener-
ation in R. https://yihui.org/knitr/.

Xie, Yihui, Christophe Dervieux, and Emily Riederer. 2020. R Markdown
Cookbook. Boca Raton, Florida: Chapman; Hall/CRC. https://bookdown
.org/yihui/rmarkdown-cookbook.

Yoshida, Kazuki, and Alexander Bartel. 2022. Tableone: Create ’Table 1’
to Describe Baseline Characteristics with or Without Propensity Score
Weights. https://CRAN.R-project.org/package=tableone.

Zhu, Hao. 2021. kableExtra: Construct Complex Table with Kable and Pipe
Syntax. https://CRAN.R-project.org/package=kableExtra.

https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=readr
https://CRAN.R-project.org/package=haven
https://CRAN.R-project.org/package=haven
https://CRAN.R-project.org/package=tidyr
https://bookdown.org/yihui/bookdown
https://bookdown.org/yihui/bookdown
https://yihui.org/knitr/
https://bookdown.org/yihui/rmarkdown-cookbook
https://bookdown.org/yihui/rmarkdown-cookbook
https://CRAN.R-project.org/package=tableone
https://CRAN.R-project.org/package=kableExtra

	Preface
	Preface
	Acknowledgments

	I Introduction to R
	Getting Started with R
	Why R?
	Installation of R and RStudio

	The R Console
	Basic Computations and Objects
	Naming Conventions

	RStudio and R Markdown
	Calling Functions
	Working Directories and Paths
	Installing and Loading Packages
	RStudio Global Options

	Tips and Reminders

	Data Structures in R
	Data Types
	Vectors
	Indexing a Vector
	Editing a Vector and Calculations
	Practice Question
	Common Vector Functions

	Factors
	Matrices
	Indexing a Matrix
	Editing a Matrix
	Practice Question

	Data Frames
	Indexing a Data Frame
	Editing a Data Frame
	Practice Question

	Lists
	Exercises

	Working with Data Files in R
	Importing and Exporting Data
	Summarizing and Creating Data Columns
	Column Summaries
	Practice Question
	Other Summary Functions
	Practice Question
	Missing, Infinite, and NaN Values

	Using Logic to Subset, Summarize, and Transform
	Practice Question
	Other Selection Functions

	Exercises

	II Exploratory Analysis
	Intro to Exploratory Data Analysis
	Univariate Distributions
	Practice Question

	Bivariate Distributions
	Practice Question

	Autogenerated Plots
	Tables
	Exercises

	Data Transformations and Summaries
	Tibbles and Data Frames
	Subsetting Data
	Practice Question

	Updating Rows and Columns
	Practice Question

	Summarizing and Grouping
	Practice Question

	Exercises

	Merging and Reshaping Data
	Tidy Data
	Reshaping Data
	Practice Question

	Merging Data with Joins
	Practice Question

	Exercises

	Visualization with ggplot2
	Intro to ggplot
	Practice Question

	Adjusting the Axes and Aesthetics
	Adding Groups
	Practice Question

	Extra Options
	Exercises

	III Distributions and Hypothesis Testing
	Probability Distributions in R
	Probability Distributions in R
	Random Samples
	Density Function
	Cumulative Distribution
	Quantile Distribution
	Reference List for Probability Distributions
	Practice Question

	Empirical Distributions and Sampling Data
	Practice Question

	Exercises

	Hypothesis Testing
	Univariate Distributions and One Sample Tests
	Practice Question

	Correlation and Covariance
	Two Sample Tests for Continuous Variables
	Practice Question
	Two Sample Variance Tests

	Two Sample Tests for Categorical Variables
	Practice Question

	Adding Hypothesis Tests to Summary Tables
	Exercises

	IV Regression
	Linear Regression
	Simple Linear Regression
	Practice Question

	Multiple Linear Regression
	Diagnostic Plots and Measures
	Normality
	Homoscedasticity, Linearity, and Collinearity
	Practice Question
	Leverage and Influence

	Interactions and Transformations
	Practice Question

	Evaluation Metrics
	Stepwise Selection
	Exercises

	Logistic Regression
	Generalized Linear Models in R
	Practice Question

	Residuals, Discrimination, and Calibration
	Receiver Operating Characteristic (ROC) Curve
	Calibration Plot
	Practice Question

	Variable Selection and Likelihood Ratio Tests
	Extending Beyond Binary Outcomes
	Exercises

	V Extra Topics
	Writing Reports in R Markdown
	Starting an R Markdown file
	Adding Code Chunks
	Customizing Chunks

	Formatting Text in Markdown
	Formatting Figures and Tables
	Using Bookdown for References
	Adding in Equations
	Exercises

	Expanding your R Skills
	Reading Documentation for New Packages
	Trying Simple Examples
	Deciphering Error Messages and Warnings
	Debugging Code

	General Programming Tips
	Exercises

	References
	References

